A Model for Low-Cycle Fatigue in Micro-Structured Materials

Article Preview

Abstract:

A microscale formulation for low-cycle fatigue degradation in heterogeneous materials is presented. The interface traction-separation law is modelled by a cohesive zone model for low-cycle fatigue analysis, which is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variables. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the static failure condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behaviour without any fatigue degradation for low levels of cyclic traction. The developed model is then applied to micro-structured materials whose micro-mechanics is analysed using a boundary integral formulation. Preliminary results demonstrate the potential of the developed cohesive model. The future application of the proposed technique is discussed in the framework of multiscale modelling of engineering components and design of micro-electro-mechanical devices (MEMS).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-140

Citation:

Online since:

December 2019

Export:

Price:

* - Corresponding Author

[1] Lemaitre J, Sermage J, Desmorat R, A two scale damage concept applied to fatigue, International Journal of Fracture, 97, 67-81, (1999).

DOI: 10.1023/a:1018641414428

Google Scholar

[2] Dugdale D, Yielding of Steel Sheets Containing Slits, Jl Mech Phys Solids, 8, 100-104, (1960).

DOI: 10.1016/0022-5096(60)90013-2

Google Scholar

[3] Barenblatt G, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, 7, 55-129, (1962).

DOI: 10.1016/s0065-2156(08)70121-2

Google Scholar

[4] Hillerborg A, Modeer M, Petersson PE, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6(6), 773-781, (1976).

DOI: 10.1016/0008-8846(76)90007-7

Google Scholar

[5] Paris P, Erdogan F, A Critical Analysis of Crack Propagation Laws, ASME J. Basic Eng., 85(4), 528–533, (1963).

DOI: 10.1115/1.3656901

Google Scholar

[6] Peerlings RHJ, Brekelmans WAM, De Borst R, Geers MGD, Gradient-Enhanced Damage Modelling of High-Cycle Fatigue, International Journal for Numerical Methods in Engineering, 49(12), 1547–1569, (2000).

DOI: 10.1002/1097-0207(20001230)49:12<1547::aid-nme16>3.0.co;2-d

Google Scholar

[7] Nguyen O, Repetto E, Ortiz M, Radovitzky R, A cohesive model of fatigue crack growth, International Journal of Fracture, 110, 351–369, (2001).

DOI: 10.1023/a:1010839522926

Google Scholar

[8] Yang Q, Shim D, Spearing S, A cohesive zone model for low cycle fatigue life prediction of solder joints, Microelectronic Engineering, 75, 85-95, (2004).

DOI: 10.1016/j.mee.2003.11.009

Google Scholar

[9] Roe K, Siegmund T, An irreversible cohesive zone model for interface fatigue crack growth simulation, Engineering Fracture Mechanics, 70, 209-232, (2003).

DOI: 10.1016/s0013-7944(02)00034-6

Google Scholar

[10] Needleman A., An analysis of decohesion along an imperfect interface, Int J Fracture, 42, 21–40, (1990).

DOI: 10.1007/bf00018611

Google Scholar

[11] Oller S, Salomon O, Onate E, A continuum mechanics model for mechanical fatigue analysis, Computational Materials Science, 32, 175-195, (2005).

DOI: 10.1016/j.commatsci.2004.08.001

Google Scholar

[12] Parrinello F, Benedetti I, Borino G. A Thermodynamically Consistent CZM for Low-Cycle Fatigue Analysis. Key Engineering Materials, 774, 576-582, (2018).

DOI: 10.4028/www.scientific.net/kem.774.576

Google Scholar

[13] Bomidi JAR, Weinzapfel N, Sadeghi F, Three-dimensional modelling of intergranular fatigue failure of fine grain polycrystalline metallic MEMS devices. Fatigue & Fracture of Engineering Materials & Structures, 35(11), 1007-1021, (2012).

DOI: 10.1111/j.1460-2695.2012.01689.x

Google Scholar

[14] Sfantos GK, Aliabadi MH. A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials. International Journal of Numerical Methods in Engineering, 69(8), 1590-1626, (2007).

DOI: 10.1002/nme.1831

Google Scholar

[15] Benedetti I, Aliabadi MH. A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 265, 36-62, (2013).

DOI: 10.1016/j.cma.2013.05.023

Google Scholar

[16] Benedetti I, Aliabadi MH. Multiscale modeling of polycrystalline materials: A boundary element approach to material degradation and fracture. Computer Methods in Applied Mechanics and Engineering, 289, 429-453, (2014).

DOI: 10.1016/j.cma.2015.02.018

Google Scholar

[17] Gulizzi V, Milazzo A, Benedetti I. An enhanced grain-boundary framework for computational homogenization and micro-cracking simulations of polycrystalline materials. Computational Mechanics, 56(4), 631-651, (2015).

DOI: 10.1007/s00466-015-1192-8

Google Scholar

[18] Benedetti I, Gulizzi V, Mallardo V. A grain boundary formulation for crystal plasticity. International Journal of Plasticity, 83, 202-224, (2016).

DOI: 10.1016/j.ijplas.2016.04.010

Google Scholar

[19] Geraci G, Aliabadi MH. Micromechanical boundary element modelling of transgranular and intergranular cohesive cracking in polycrystalline materials. Engineering Fracture Mechanics, 176, 351-374, (2017).

DOI: 10.1016/j.engfracmech.2017.03.016

Google Scholar

[20] Galvis AF, Rodríguez RQ, Sollero P. Dynamic analysis of three-dimensional polycrystalline materials using the boundary element method, Computers & Structures, 200, 11-20, (2018).

DOI: 10.1016/j.compstruc.2018.02.009

Google Scholar

[21] Gulizzi V, Rycroft CH, Benedetti I. Modelling intergranular and transgranular micro-cracking in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 329, 168-194, (2018).

DOI: 10.1016/j.cma.2017.10.005

Google Scholar

[22] Benedetti I, Gulizzi V, Milazzo A. Grain-boundary modelling of hydrogen assisted intergranular stress corrosion cracking. Mechanics of Materials, 117, 137-151, (2018).

DOI: 10.1016/j.mechmat.2017.11.001

Google Scholar

[23] Benedetti I, Gulizzi V, A grain-scale model for high-cycle fatigue degradation in polycrystalline materials, International Journal of Fatigue, 116, 90-105, (2018).

DOI: 10.1016/j.ijfatigue.2018.06.010

Google Scholar

[24] Jalalahmadi B, Sadeghi F, Peroulis D. A numerical fatigue damage model for life scatter of MEMS devices, Journal of Micro electro mechanical Systems, 18 (5), 1016-1031, (2009).

DOI: 10.1109/jmems.2009.2024800

Google Scholar

[25] Parrinello F, Failla B, Borino G, Cohesive-frictional interface constitutive model, International Journal of Solids and Structures, 46(13), 2680-2692, (2009).

DOI: 10.1016/j.ijsolstr.2009.02.016

Google Scholar

[26] Parrinello F, Marannano G, Borino G, A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination, Engineering Fracture Mechanics, 153, 61-79, (2016).

DOI: 10.1016/j.engfracmech.2015.12.001

Google Scholar

[27] Parrinello F, Borino G, Integration of finite displacement interface element in reference and current configurations, Meccanica, 53, 1455-1468, (2018).

DOI: 10.1007/s11012-017-0804-0

Google Scholar

[28] Parrinello F, Marannano G, Pasta G, Borino G, Frictional effect in mode II delamination: Experimental test and numerical simulation, Engineering Fracture Mechanics, 110, 258-269, (2013).

DOI: 10.1016/j.engfracmech.2013.08.005

Google Scholar

[29] Parrinello, F., Marannano, G., (2018). Cohesive delamination and frictional contact on joining surface via XFEM. AIMS Materials Science 5 (1), 127-144.

DOI: 10.3934/matersci.2018.1.127

Google Scholar

[30] Marannano G, Pasta A, Parrinello F, Giallanza A. Effect of the indentation process on fatigue life of drilled specimens. Jou. Mech.Sci.Tech. 29 (7): 2847-2856, (2015).

DOI: 10.1007/s12206-015-0613-0

Google Scholar

[31] Parrinello F, Borino G, Non associative damage interface model for mixed mode delamination and frictional contact. European Journal of .Mechanics A/Solids. 76, 108-122, (2019).

DOI: 10.1016/j.euromechsol.2019.03.012

Google Scholar

[32] Parrinello F, Analytical Solution of the 4ENF Test with Interlaminar Frictional Effects and Evaluation of Mode II Delamination Toughness, Journal of Engineering Mechanics, ASCE, 144(4), (2018).

DOI: 10.1061/(asce)em.1943-7889.0001433

Google Scholar

[33] Borino G, Fratini L, Parrinello F, Mode I failure modeling of friction stir welding joints, Int J Adv Manuf Technol, 41, 498–503, (2009).

DOI: 10.1007/s00170-008-1498-1

Google Scholar

[34] Aliabadi MH. The boundary element method, applications in solids and structures, Vol.2, John Wiley & Sons, (2002).

Google Scholar

[35] Gulizzi V, Milazzo A, Benedetti I. Fundamental solutions for general anisotropic multi-field materials based on spherical harmonics expansions. International Journal of Solids and Structures, 100, 169-186, (2016).

DOI: 10.1016/j.ijsolstr.2016.08.014

Google Scholar