Theoretical Investigation of NiI2 Based Bilayer Heterostructures

Article Preview

Abstract:

The electronic structure of nickel iodide monolayer in NiI2/ScX2 (X = S, Se and Te) and NiI2/NiTe2 heterostructures was investigated by density functional theory (DFT). The spin-asymmetric semiconducting behavior of NiI2 monolayer in these interfaces was observed. The width of the band gap of the NiI2 monolayer practically does not change in heterostructures and remains at the level of 1.7 and 3.0 eV for minor and major spin channels, respectively. The NiI2 layer can be p-doped by stacking with ScX2 dichalcogenides. On the contrary, charge transfer (~0.01 |e| per f.u.) from NiTe2 leads to n-doping of NiI2. As a result, the Fermi level shifts up to the area of NiI2 conduction band with spin down carriers only, which gives prospects of using this material in spin filter applications. The electronic structure of NiI2/ScTe2 under isotropic deformation in the plane remains the same under tension and compression within 5%, except for a small change in the band gap in the composite layers of NiI2 within 25%. This allows one to conclude about the stability of the electronic properties under deformations, which gives possibility to use the heterostructures in flexible electronics devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-16

Citation:

Online since:

June 2019

Export:

Price:

* - Corresponding Author

[1] M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors, Nat. Rev. Mater. 1 (2016) 16052.

Google Scholar

[2] D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11 (2016) 218–230.

DOI: 10.1038/nnano.2015.340

Google Scholar

[3] J. Pető, T. Ollár, P. Vancsó, Z.I. Popov, G.Z. Magda, G. Dobrik, C. Hwang, P.B. Sorokin, L. Tapasztó, Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions, Nat. Chem. 10 (2018) 1246–1251.

DOI: 10.1038/s41557-018-0136-2

Google Scholar

[4] B. Mendoza-Sánchez, Y. Gogotsi, Synthesis of Two-Dimensional Materials for Capacitive Energy Storage, Adv. Mater. 28 (2016) 6104–6135.

DOI: 10.1002/adma.201506133

Google Scholar

[5] K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics. 10 (2016) 216–226.

DOI: 10.1038/nphoton.2015.282

Google Scholar

[6] D.V. Shtansky, K.L. Firestein, D.V. Golberg, Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids, Nanoscale. 10 (2018) 17477–17493.

DOI: 10.1039/c8nr05027a

Google Scholar

[7] Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies, J. Am. Chem. Soc. 137 (2015) 16008–16011.

DOI: 10.1021/jacs.5b11199

Google Scholar

[8] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and Catalytic Applications of CeO2 -Based Materials, Chem. Rev. 116 (2016) 5987–6041.

DOI: 10.1021/acs.chemrev.5b00603

Google Scholar

[9] I.V. Chepkasov, M.A. Visotin, E.A. Kovaleva, A.M. Manakhov, V.S. Baidyshev, Z.I. Popov, Stability and Electronic Properties of PtPd Nanoparticles via MD and DFT Calculations, J. Phys. Chem. C. 122 (2018) 18070–18076.

DOI: 10.1021/acs.jpcc.8b04177

Google Scholar

[10] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263–275.

DOI: 10.1038/nchem.1589

Google Scholar

[11] M. Bonilla, S. Kolekar, Y. Ma, H.C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.-H. Phan, M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13 (2018) 289–293.

DOI: 10.1038/s41565-018-0063-9

Google Scholar

[12] Z.I. Popov, N.S. Mikhaleva, M.A. Visotin, A.A. Kuzubov, S. Entani, H. Naramoto, S. Sakai, P.B. Sorokin, P.V. Avramov, The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures, Phys. Chem. Chem. Phys. 18 (2016) 33047–33052.

DOI: 10.1039/c6cp06732h

Google Scholar

[13] N.S. Mikhaleva, M.A. Visotin, A.A. Kuzubov, Z.I. Popov, VS2/Graphene Heterostructures as Promising Anode Material for Li-Ion Batteries, J. Phys. Chem. C. 121 (2017) 24179–24184.

DOI: 10.1021/acs.jpcc.7b07630

Google Scholar

[14] V.V. Kulish, W. Huang, Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations, J. Mater. Chem. C. 5 (2017) 8734–8741.

DOI: 10.1039/c7tc02664a

Google Scholar

[15] T. Kurumaji, S. Seki, S. Ishiwata, H. Murakawa, Y. Kaneko, Y. Tokura, Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2, Phys. Rev. B. 87 (2013).

DOI: 10.1103/physrevb.87.014429

Google Scholar

[16] X. Liu, R. Hu, L. Chai, H. Li, J. Gu, Y. Qian, Synthesis and Characterization of Hexagonal NiTe2 Nanoplates, J. Nanosci. Nanotechnol. 9 (2009) 2715–2718.

DOI: 10.1166/jnn.2009.dk14

Google Scholar

[17] L. Jiang, Y.-J. Zhu, J.-B. Cui, Cetyltrimethylammonium bromide assisted self-assembly of NiTe2 nanoflakes: Nanoflake arrays and their photoluminescence properties, J. Solid State Chem. 183 (2010) 2358–2364.

DOI: 10.1016/j.jssc.2010.08.004

Google Scholar

[18] Y.-X. Lei, J.-P. Zhou, Q. Ul Hassan, J.-Z. Wang, One-step synthesis of NiTe2 nanorods coated with few-layers MoS2 for enhancing photocatalytic activity, Nanotechnology. 28 (2017) 495602.

DOI: 10.1088/1361-6528/aa94ae

Google Scholar

[19] H. Zhang, X. Lin, Z.-K. Tang, Stable ScS2 nanostructures with tunable electronic and magnetic properties, Solid State Commun. 220 (2015) 12–16.

DOI: 10.1016/j.ssc.2015.06.022

Google Scholar

[20] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558–561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[21] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B. 49 (1994) 14251–14269.

DOI: 10.1103/physrevb.49.14251

Google Scholar

[22] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[23] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864–B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[24] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[25] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953–17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[26] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758–1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[27] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[28] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B. 57 (1998) 1505–1509.

DOI: 10.1103/physrevb.57.1505

Google Scholar

[29] L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA + U framework, Phys. Rev. B. 73 (2006).

DOI: 10.1103/physrevb.73.195107

Google Scholar

[30] R. Mohammad, S. Katirciouglu, A comparative study for structural and electronic properties of single-crystal ScN, Condens. Matter Phys. 14 (2011) 23701.

DOI: 10.5488/cmp.14.23701

Google Scholar

[31] J. Zhou, Q. Sun, Magnetism of Phthalocyanine-Based Organometallic Single Porous Sheet, J. Am. Chem. Soc. 133 (2011) 15113–15119.

DOI: 10.1021/ja204990j

Google Scholar

[32] J. Zhou, Q. Wang, Q. Sun, Y. Kawazoe, P. Jena, Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets, J. Phys. Chem. Lett. 3 (2012) 3109–3114.

DOI: 10.1021/jz301303t

Google Scholar

[33] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.

DOI: 10.1002/jcc.20495

Google Scholar

[34] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[35] C. Ataca, H. Şahin, S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure, J. Phys. Chem. C. 116 (2012) 8983–8999.

DOI: 10.1021/jp212558p

Google Scholar

[36] S.-H. Lin, J.-L. Kuo, Towards the ionic limit of two-dimensional materials: monolayer alkaline earth and transition metal halides, Phys. Chem. Chem. Phys. 16 (2014) 20763–20771.

DOI: 10.1039/c4cp02048k

Google Scholar

[37] V.V. Kulish, W. Huang, Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations, J. Mater. Chem. C. 5 (2017) 8734–8741.

DOI: 10.1039/c7tc02664a

Google Scholar

[38] X. Wang, Z. Song, W. Wen, H. Liu, J. Wu, C. Dang, M. Hossain, M.A. Iqbal, L. Xie, Potential 2D Materials with Phase Transitions: Structure, Synthesis, and Device Applications, Adv. Mater. (2018) 1804682.

DOI: 10.1002/adma.201804682

Google Scholar