Progressive Freeze Concentration for Wastewater Treatment from Food Industry

Article Preview

Abstract:

Crystallization technique is one of the potential techniques to deal with wastewater treatment. In this work, progressive freeze concentration (PFC) technique was studied for its effectiveness in wastewater treatment from food industry. In PFC, pure water is produced in the form of ice crystal block and leave behind a higher concentration solution. The effect of coolant temperature and stirring speed on the effective partition constant (K) and solute recovery (Y) were investigated. Glucose solution was used as simulated wastewater sample. The best conditions were found at the moderate coolant temperature of -10°C and maximum stirring speed of 500 rpm, resulted in the lowest K value and highest Y, lead to the highest efficiency on the wastewater treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

March 2019

Export:

Price:

* - Corresponding Author

[1] K. Seriki, J. Gasperi, L. Castillo, L. Scholes, E. Eriksson, M. Revitt, J. Meinhold, N. Atanasova, Priority pollutants behaviour in end of pipe wastewater treatment plants, in, Technical University of Denmark, (2008).

Google Scholar

[2] S. García-Ballesteros, M. Mora, R. Vicente, C. Sabater, M.A. Castillo, A. Arques, A.M. Amat, Gaining further insight into photo-Fenton treatment of phenolic compounds commonly found in food processing industry, Chemical Engineering Journal, 288 (2016) 126-136.

DOI: 10.1016/j.cej.2015.11.031

Google Scholar

[3] R. Hanafie, Suwarta, Alfiana, Variety and characteristic of processed food industry based on Cassava, Agriculture and Agricultural Science Procedia, 9 (2016) 258-263.

DOI: 10.1016/j.aaspro.2016.02.145

Google Scholar

[4] M. Salgot, M. Folch, Wastewater treatment and water reuse, Current Opinion in Environmental Science & Health, 2 (2018) 64-74.

DOI: 10.1016/j.coesh.2018.03.005

Google Scholar

[5] I. Maarof Hawaiah, W. Daud Wan Mohd Ashri, K. Aroua Mohamed, Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies, in: Reviews in Chemical Engineering, 2017, p.359.

DOI: 10.1515/revce-2016-0021

Google Scholar

[6] X. Kong, S. Xu, J. Liu, H. Li, K. Zhao, L. He, Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization, Journal of Environmental Management, 166 (2016) 31-37.

DOI: 10.1016/j.jenvman.2015.10.002

Google Scholar

[7] P.S. Calabrò, A. Fòlino, V. Tamburino, G. Zappia, D.A. Zema, Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation, Biosystems Engineering, 172 (2018) 19-28.

DOI: 10.1016/j.biosystemseng.2018.05.010

Google Scholar

[8] F. Fadzil, S. Ibrahim, M.A.K.M. Hanafiah, Adsorption of lead(II) onto organic acid modified rubber leaf powder: Batch and column studies, Process Safety and Environmental Protection, 100 (2016) 1-8.

DOI: 10.1016/j.psep.2015.12.001

Google Scholar

[9] C. Jeon, Adsorption and recovery of immobilized coffee ground beads for silver ions from industrial wastewater, Journal of Industrial and Engineering Chemistry, 53 (2017) 261-267.

DOI: 10.1016/j.jiec.2017.04.034

Google Scholar

[10] N.H. Alias, J. Jaafar, S. Samitsu, N. Yusof, M.H.D. Othman, M.A. Rahman, A.F. Ismail, F. Aziz, W.N.W. Salleh, N.H. Othman, Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers, Chemosphere, 204 (2018) 79-86.

DOI: 10.1016/j.chemosphere.2018.04.033

Google Scholar

[11] R. Gade, J. Ahemed, K.L. Yanapu, S.Y. Abate, Y.-T. Tao, S. Pola, Photodegradation of organic dyes and industrial wastewater in the presence of layer-type perovskite materials under visible light irradiation, Journal of Environmental Chemical Engineering, 6 (2018) 4504-4513.

DOI: 10.1016/j.jece.2018.06.057

Google Scholar

[12] N.S.M. Aris, S. Ibrahim, B. Arifin, Y. Hawari, Effect of operating parameters on decolourisation of palm oil mill effluent (POME) using electrocoagulation process, Pertanika Journal of Science and Technology, 25 (2017) 197-206.

Google Scholar

[13] A. Kumar, P.V. Nidheesh, M. Suresh Kumar, Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes, Chemosphere, 205 (2018) 587-593.

DOI: 10.1016/j.chemosphere.2018.04.141

Google Scholar

[14] N. Dizge, C. Akarsu, Y. Ozay, H.E. Gulsen, S.K. Adiguzel, M.A. Mazmanci, Sono-assisted electrocoagulation and cross-flow membrane processes for brewery wastewater treatment, Journal of Water Process Engineering, 21 (2018) 52-60.

DOI: 10.1016/j.jwpe.2017.11.016

Google Scholar

[15] I. Petrinic, J. Korenak, D. Povodnik, C. Hélix-Nielsen, A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry, Journal of Cleaner Production, 101 (2015) 292-300.

DOI: 10.1016/j.jclepro.2015.04.022

Google Scholar

[16] J.M. Ochando-Pulido, A. Martinez-Ferez, Experimental design optimization of reverse osmosis purification of pretreatedolive mill wastewater, Science of The Total Environment, 587-588 (2017) 414-422.

DOI: 10.1016/j.scitotenv.2017.02.045

Google Scholar

[17] F. Volpin, E. Fons, L. Chekli, J.E. Kim, A. Jang, H.K. Shon, Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling, Process Safety and Environmental Protection, 117 (2018) 523-532.

DOI: 10.1016/j.psep.2018.05.006

Google Scholar

[18] M. Hasan, N. Rotich, M. John, M. Louhi-Kultanen, Salt recovery from wastewater by air-cooled eutectic freeze crystallization, Chemical Engineering Journal, 326 (2017) 192-200.

DOI: 10.1016/j.cej.2017.05.136

Google Scholar

[19] M. Jusoh, R.M. Yunus, M.A. Abu Hassan, , Effect of flowrate and coolant temperature on the efficiency of progressive freeze concentration on simulated wastewater, in: World Academy of Science, Engineering and Technology, (2008).

Google Scholar

[20] Y. Yin, Y. Yang, M. de Lourdes Mendoza, S. Zhai, W. Feng, Y. Wang, M. Gu, L. Cai, L. Zhang, Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater, Journal of Cleaner Production, 144 (2017) 180-186.

DOI: 10.1016/j.jclepro.2017.01.012

Google Scholar

[21] H. Lu, J. Wang, T. Wang, N. Wang, Y. Bao, H. Hao, Crystallization techniques in wastewater treatment: An overview of applications, Chemosphere, 173 (2017) 474-484.

DOI: 10.1016/j.chemosphere.2017.01.070

Google Scholar

[22] R. Fujioka, L.P. Wang, G. Dodbiba, T. Fujita, Application of progressive freeze-concentration for desalination, Desalination, 319 (2013) 33-37.

DOI: 10.1016/j.desal.2013.04.005

Google Scholar

[23] O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, K. Kagitani, Tubular ice system for scale-up of progressive freeze-concentration, Journal of Food Engineering, 69 (2005) 107-113.

DOI: 10.1016/j.jfoodeng.2004.07.016

Google Scholar

[24] O. Miyawaki, C. Omote, M. Gunathilake, K. Ishisaki, S. Miwa, A. Tagami, S. Kitano, Integrated system of progressive freeze-concentration combined with partial ice-melting for yield improvement, Journal of Food Engineering, 184 (2016) 38-43.

DOI: 10.1016/j.jfoodeng.2016.03.019

Google Scholar

[25] O. Miyawaki, M. Gunathilake, C. Omote, T. Koyanagi, T. Sasaki, H. Take, A. Matsuda, K. Ishisaki, S. Miwa, S. Kitano, Progressive freeze-concentration of apple juice and its application to produce a new type apple wine, Journal of Food Engineering, 171 (2016) 153-158.

DOI: 10.1016/j.jfoodeng.2015.10.022

Google Scholar

[26] G. Petzold, J. Moreno, P. Lastra, K. Rojas, P. Orellana, Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices, Innovative Food Science & Emerging Technologies, 30 (2015) 192-197.

DOI: 10.1016/j.ifset.2015.03.007

Google Scholar

[27] M. Rodriguez, S. Luque, J. Alvarez, J. Coca, A comparative study of reverse osmosis and freeze concentration for the removal of valeric acid from wastewaters, Desalination, 127 (2000) 1-11.

DOI: 10.1016/s0011-9164(99)00187-3

Google Scholar

[28] N.A. Amran, M. Jusoh, Effect of coolant temperature and circulation flowrate on the performance of a vertical finned crystallizer, Procedia Engineering, 148 (2016) 1408-1415.

DOI: 10.1016/j.proeng.2016.06.576

Google Scholar

[29] S. Samsuri, N.A. Amran, M. Jusoh, Spiral finned crystallizer for progressive freeze concentration process, Chemical Engineering Research and Design, 104 (2015) 280-286.

DOI: 10.1016/j.cherd.2015.06.040

Google Scholar

[30] F.H. Ab. Hamid, N.A. Rahim, A. Johari, N. Ngadi, Z.Y. Zakaria, M. Jusoh, Desalination of seawater through progressive freeze concentration using a coil crystallizer, Water Science and Technology: Water Supply, 15 (2015) 625-631.

DOI: 10.2166/ws.2015.019

Google Scholar

[31] N.Z. Safiei, N. Ngadi, A. Johari, Z.Y. Zakaria, M. Jusoh, Grape juice concentration by progressive freeze concentrator sequence system, Journal of Food Processing and Preservation, 41 (2017).

DOI: 10.1111/jfpp.12910

Google Scholar

[32] G. Petzold, P. Orellana, J. Moreno, E. Cerda, P. Parra, Vacuum-assisted block freeze concentration applied to wine, Innovative Food Science & Emerging Technologies, 36 (2016) 330-335.

DOI: 10.1016/j.ifset.2016.07.019

Google Scholar

[33] P. Orellana-Palma, G. Petzold, L. Pierre, J.M. Pensaben, Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration, Food and Chemical Toxicology, 109 (2017) 1093-1102.

DOI: 10.1016/j.fct.2017.03.038

Google Scholar

[34] J. Sánchez, Y. Ruiz, M. Raventós, J.M. Auleda, E. Hernández, Progressive freeze concentration of orange juice in a pilot plant falling film, Innovative Food Science & Emerging Technologies, 11 (2010) 644-651.

DOI: 10.1016/j.ifset.2010.06.006

Google Scholar

[35] M. Osorio, F.L. Moreno, M. Raventós, E. Hernández, Y. Ruiz, Progressive stirred freeze-concentration of ethanol-water solutions, Journal of Food Engineering, 224 (2018) 71-79.

DOI: 10.1016/j.jfoodeng.2017.12.026

Google Scholar

[36] F.L. Moreno, C.M. Robles, Z. Sarmiento, Y. Ruiz, J.M. Pardo, Effect of separation and thawing mode on block freeze-concentration of coffee brews, Food and Bioproducts Processing, 91 (2013) 396-402.

DOI: 10.1016/j.fbp.2013.02.007

Google Scholar

[37] S. Samsuri, N.A. Amran, M. Jusoh, Modelling of heat transfer for progressive freeze concentration process by spiral finned crystallizer, Chinese Journal of Chemical Engineering, 26 (2018) 970-975.

DOI: 10.1016/j.cjche.2017.09.025

Google Scholar

[38] J.M. Auleda, M. Raventós, J. Sánchez, E. Hernández, Estimation of the freezing point of concentrated fruit juices for application in freeze concentration, Journal of Food Engineering, 105 (2011) 289-294.

DOI: 10.1016/j.jfoodeng.2011.02.035

Google Scholar

[39] N.A. Amran, S. Samsuri, M. Jusoh, Effect of freezing time and shaking speed on the performance of progressive freeze concentration via vertical finned crystallizer, International Journal of Automotive and Mechanical Engineering, 15 (2018) 5356-5366.

DOI: 10.15282/ijame.15.2.2018.15.0412

Google Scholar

[40] W. Gao, Y. Shao, Freeze concentration for removal of pharmaceutically active compounds in water, Desalination, 249 (2009) 398-402.

DOI: 10.1016/j.desal.2008.12.065

Google Scholar

[41] Y. Yang, Y. Lu, J. Guo, X. Zhang, Application of freeze concentration for fluoride removal from water solution, Journal of Water Process Engineering, 19 (2017) 260-266.

DOI: 10.1016/j.jwpe.2017.05.009

Google Scholar

[42] F. Melak, G. Du Laing, A. Ambelu, E. Alemayehu, Application of freeze desalination for chromium (VI) removal from water, Desalination, 377 (2016) 23-27.

DOI: 10.1016/j.desal.2015.09.003

Google Scholar

[43] M. Jusoh, R.M. Yunus, M.A. Abu Hassan, Performance investigation on a new design for progressive freeze concentration system, Journal of Applied Sciences, 9 (2009) 3171-3175.

DOI: 10.3923/jas.2009.3171.3175

Google Scholar

[44] M. Jusoh, R.M. Yunus, M.A. Abu Hassan, , Performance investigation on a new design for progressive freeze concentration system, Journal of Applied Sciences, 9 (2009) 3171-3175.

DOI: 10.3923/jas.2009.3171.3175

Google Scholar

[45] L. Liu, T. Fuji, K. Hayakawa, O. Miyawaki, Prevention of Initial Supercooling in Progressive Freeze Concentration, Bioscience, Biotechnology and Biochemistry, 62 (1998) 2467-2469.

DOI: 10.1271/bbb.62.2467

Google Scholar

[46] C.S. Luo, W.W. Chen, W.F. Han, Experimental study on factors affecting the quality of ice crystal during the freezing concentration for the brackish water, Desalination, 260 (2010) 231-238.

DOI: 10.1016/j.desal.2010.04.018

Google Scholar

[47] F.A. Ramos, J.L. Delgado, E. Bautista, A.L. Morales, C. Duque, Changes in volatiles with the application of progressive freeze-concentration to Andes berry (Rubus glaucus Benth), Journal of Food Engineering, 69 (2005) 291-297.

DOI: 10.1016/j.jfoodeng.2004.07.022

Google Scholar

[48] Z. Zhang, R.W. Hartel, A multilayer freezer for freeze concentration of liquid milk, Journal of Food Engineering, 29 (1996) 23-38.

DOI: 10.1016/0260-8774(95)00049-6

Google Scholar

[49] S. Okawa, T. Ito, A. Saito, Effect of crystal orientation on freeze concentration of solutions, International Journal of Refrigeration, 32 (2009) 246-252.

DOI: 10.1016/j.ijrefrig.2008.06.001

Google Scholar