The Effect of pH on Zinc Oxide Nanoparticles Characteristics Synthesized from Banana Peel Extract

Article Preview

Abstract:

In this study, Zinc Oxide (ZnO) Nanoparticles (NPs) were synthesized from banana peels (Jackfruit banana) extract (BPE) at different pH condition. The samples were then characterized to identify the optimum pH condition for producing ZnO NPs and at the same time determine the crystallite and particles size of ZnO. This paper covered a section of green chemistry since green application has become an attention nowadays. Slo-gel method is the method used to synthesize the ZnO NPS because the advantages in terms of eco-friendly, less time consumption, cost effective and easy to apply. BPE is one of raw material that has the ability to act as stabilizer and reducing agent. The samples were characterized using Fourier Transform Infrared Red (FTIR) Spectroscopy, UV-visible spectrometer (UV-Vis), X-ray diffraction (XRD) and Brunaner-Emmett-Teller (BET). It was found that the presence of ZnO were recorded from FTIR spectra at wavenumber 350-390 cm-1 for all samples which indicating the presence of ZnO bond. The UV-Vis spectrometer was recorded to observe the absorption peak, the highest absorption peak at 367 nm and the band gap was 3.38 Ev at pH 12. XRD analysis showed the ZnO nanoparticles formed to have hexagonal wurtzite structure and the crystallite size between 16 to 23 nm and the smallest crystallite size was smallest at pH 12. BET analysis showed that the surface area of ZnO NPs between 15 to 53 m2/g and the average particles size of ZnO NPs between 20 to 66 nm. As a conclusion, ZnO NPs can be produced from BPE at optimum pH of 12.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-279

Citation:

Online since:

March 2019

Export:

Price:

* - Corresponding Author

[1] E. Zare, S. Pourseyedi, M. Khatami, and E. Darezereshki, Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity,, J. Mol. Struct., vol. 1146, p.96–103, (2017).

DOI: 10.1016/j.molstruc.2017.05.118

Google Scholar

[2] K. Subramani and W. Ahmed, Nanotechnology and its applications in dentistry—An introduction,, in Emerging Nanotechnologies in Dentistry, Elsevier, 2018, p.1–15.

DOI: 10.1016/b978-0-12-812291-4.00001-7

Google Scholar

[3] S. Sabir, M. Arshad, and S. K. Chaudhari, Zinc Oxide Nanoparticles for Revolutionizing Agriculture : Synthesis and Applications,, vol. 2014, (2014).

DOI: 10.1155/2014/925494

Google Scholar

[4] A. Kołodziejczak-radzimska and T. Jesionowski, Zinc Oxide—From Synthesis to Application: A Review,, p.2833–2881, (2014).

DOI: 10.3390/ma7042833

Google Scholar

[5] I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, and D. Y. Goswami, One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications,, Mater. Sci. Semicond. Process., vol. 16, no. 6, p.2070–2083, (2013).

DOI: 10.1016/j.mssp.2013.06.017

Google Scholar

[6] J. N. Tiwari, R. N. Tiwari, and K. S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices,, Prog. Mater. Sci., vol. 57, no. 4, p.724–803, (2012).

DOI: 10.1016/j.pmatsci.2011.08.003

Google Scholar

[7] A. C. Mohan and B. Renjanadevi, Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy ( SEM ) and X-Ray,, Procedia Technol., vol. 24, p.761–766, (2016).

DOI: 10.1016/j.protcy.2016.05.078

Google Scholar

[8] A. Castro-beltr, Fruit peel extract mediated green synthesis of zinc oxide nanoparticles,, vol. 1147, p.1–6, (2017).

Google Scholar

[9] M. Hasanpoor, M. Aliofkhazraei, and H. Delavari, Microwave-assisted Synthesis of Zinc Oxide Nanoparticles,, Procedia Mater. Sci., vol. 11, no. 2014, p.320–325, (2015).

DOI: 10.1016/j.mspro.2015.11.101

Google Scholar

[10] Siswanto, N. T. Rochman, and P. R. Akwalia, Fabrication and characterization of Zinc Oxide (ZnO) nanoparticle by sol-gel method,, J. Phys. Conf. Ser., vol. 853, no. 1, p.58–63, (2017).

DOI: 10.1088/1742-6596/853/1/012041

Google Scholar

[11] N. Ain Samat and R. Md Nor, Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts,, Ceram. Int., vol. 39, no. SUPPL.1, pp. S545–S548, (2013).

DOI: 10.1016/j.ceramint.2012.10.132

Google Scholar

[12] N. A. Salahuddin, M. El-kemary, and E. M. Ibrahim, Synthesis and Characterization of ZnO Nanoparticles via Precipitation Method : Effect of Annealing Temperature on Particle Size,, Nanosci. Nanotechnol., vol. 5, no. 4, p.82–88, (2015).

Google Scholar

[13] S. Bagheri, K. G. Chandrappa, and S. B. A. Hamid, Facile synthesis of nano-sized ZnO by direct precipitation method,, Der Pharma Chem., vol. 5, no. 3, p.265–270, (2013).

Google Scholar

[14] D. Yiamsawas, K. Boonpavanitchakul, and W. Kangwansupamonkon, Preparation of ZnO Nanostructures by Solvothermal Method,, J. Microsc. Soc., vol. 23, no. 1, p.75–78, (2009).

Google Scholar

[15] Ö. A. Yildirim and C. Durucan, Synthesis of zinc oxide nanoparticles elaborated by microemulsion method,, J. Alloys Compd., vol. 506, no. 2, p.944–949, (2010).

DOI: 10.1016/j.jallcom.2010.07.125

Google Scholar

[16] P. Jamdagni, P. Khatri, and J. S. Rana, Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity,, J. King Saud Univ. - Sci., (2016).

DOI: 10.1016/j.jksus.2016.10.002

Google Scholar

[17] A. C. Dhanemozhi, V. Rajeswari, and S. Sathyajothi, Green Synthesis of Zinc Oxide Nanoparticle Using Green Tea Leaf Extract for Supercapacitor Application,, Mater. Today Proc., vol. 4, no. 2, p.660–667, (2017).

DOI: 10.1016/j.matpr.2017.01.070

Google Scholar

[18] R. Dobrucka and J. Długaszewska, Biosynthesis and antibacterial activity of Zno nanoparticles using Trifolium Pratense flower extract,, SAUDI J. Biol. Sci., (2015).

DOI: 10.1016/j.sjbs.2015.05.016

Google Scholar

[19] C. Vidya et al., Green synthesis of ZnO nanoparticles by Calotropis gigantea,, Int J Curr Eng Technol, vol. 1, no. Ncwse, p.118–120, (2013).

Google Scholar

[20] F. T. Thema, E. Manikandan, M. S. Dhlamini, and M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract,, Mater. Lett., vol. 161, p.124–127, (2015).

DOI: 10.1016/j.matlet.2015.08.052

Google Scholar

[21] K. Elumalai and S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.),, Appl. Surf. Sci., vol. 345, p.329–336, (2015).

DOI: 10.1016/j.apsusc.2015.03.176

Google Scholar

[22] C. Joel and M. S. M. Badhusha, Green synthesis of ZnO nanoparticles using Phyllanthus embilica stem extract and their antibacterial activity,, Der Pharm. Lett., vol. 8, no. 11, p.218–223, (2016).

Google Scholar

[23] A. Bankar, B. Joshi, A. Ravi, and S. Zinjarde, Colloids and Surfaces A : Physicochemical and Engineering Aspects Banana peel extract mediated novel route for the synthesis of silver nanoparticles,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 368, no. 1–3, p.58–63, (2010).

DOI: 10.1016/j.colsurfa.2010.07.024

Google Scholar

[24] R. Wahab, S. G. Ansari, Y. S. Kim, M. Song, and H. Shin, Applied Surface Science The role of pH variation on the growth of zinc oxide nanostructures,, vol. 255, p.4891–4896, (2009).

DOI: 10.1016/j.apsusc.2008.12.037

Google Scholar

[25] D. Ramimoghadam, M. Zobir, B. Hussein, and Y. H. Taufiq-yap, Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate,, p.1–10, (2013).

DOI: 10.1186/1752-153x-7-136

Google Scholar

[26] S. Jeyabharathi, K. Kalishwaralal, K. Sundar, and A. Muthukumaran, Synthesis of zinc oxide nanoparticles (ZnONPs) by aqueous extract of Amaranthus caudatus and evaluation of their toxicity and antimicrobial activity,, Mater. Lett., vol. 209, p.295–298, (2017).

DOI: 10.1016/j.matlet.2017.08.030

Google Scholar

[27] S. P. Rajendran and K. Sengodan, Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract as Reducing Agent,, vol. 2017, (2017).

DOI: 10.1155/2017/8348507

Google Scholar

[28] R. M. Alwan et al., Synthesis of Zinc Oxide Nanoparticles via Sol – Gel Route and Their Characterization,, vol. 5, no. 1, p.1–6, (2015).

Google Scholar

[29] J. Estrada-urbina, A. Cruz-alonso, M. Santander-gonz, M. Abraham, and V. Alma, Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize,, p.1–12, (1999).

DOI: 10.3390/nano8040247

Google Scholar

[30] J. Jiang, Y. Li, S. Tan, and Z. Huang, Synthesis of zinc oxide nanotetrapods by a novel fast microemulsion-based hydrothermal method,, Mater. Lett., vol. 64, no. 20, p.2191–2193, (2010).

DOI: 10.1016/j.matlet.2010.07.026

Google Scholar

[31] N. Kamarulzaman, M. F. Kasim, and R. Rusdi, Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials,, Nanoscale Res. Lett., vol. 10, no. 1, (2015).

DOI: 10.1186/s11671-015-1034-9

Google Scholar

[32] P. Vanathi, P. Rajiv, S. Narendhran, S. Rajeshwari, P. K. S. M. Rahman, and R. Venckatesh, Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: A green chemistry approach,, Mater. Lett., vol. 134, p.13–15, (2014).

DOI: 10.1016/j.matlet.2014.07.029

Google Scholar

[33] N. Singh and F. Z. Haque, Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique,, Opt. - Int. J. Light Electron Opt., vol. 127, no. 1, p.174–177, (2016).

DOI: 10.1016/j.ijleo.2015.09.024

Google Scholar

[34] G. Thiele, M. Poston, and R. Brown, A case study sizing Nanoparticles,, 234th ACS Natl. Meet., p.316, (2007).

Google Scholar