Ball-Milling of Gas Atomized Al88Ce8Fe4 Powders

Article Preview

Abstract:

Gas atomized Al88Ce8Fe4 alloy powders were ball-milled and investigated at charge ratiosof 5:1, 15:1 and 30:1 and milling speeds of 150 and 200 [RPM], respectively. The morphology,microstructure and composition of the powders were examined by laser diffraction technique, SEM,EDS and XRD. The result indicates the evolution of the powders under milling experiences initiallycold welding, aggregating the powders into larger-sized disk-shaped particles; followed byfragmentation, forming smaller-sized equiaxed particles; and finally leading to a steady state, whereparticles morphology, composition and phases keep constantly unchanged. This procedure has beentestified as a general rule for milling at each of the charge ratios of 5:1, 15:1 and 30:1 and at millingspeeds of 150 and 200 [RPM] while milling at larger charge ratios or higher speeds drives faster toreach the steady state at which homogeneous, fine-sized glassy powders can be obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

208-215

Citation:

Online since:

November 2018

Export:

Price:

* - Corresponding Author

[1] A. Inoue, K. Ohtera, A. P. Tsai, T. Masumoto, New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M= Fe, Co, Ni or Cu) systems, Jpn. J. Appl. Phys. 27 (3) (1988) L280-L282.

DOI: 10.1143/jjap.27.l280

Google Scholar

[2] Y. He, S. J. Poon, G. J. Shiflet. Synthesis and properties of metallic glasses that contain aluminum. Science. 241 (4873) (1988) 1640-1642.

DOI: 10.1126/science.241.4873.1640

Google Scholar

[3] H. Chen, Y. He, G. J. Shiflet, S. J. Poon, Mechanical properties of partially crystallized aluminum based metallic glasses, Scrip. Metall. Mater. 25(6) (1991) 1421-1424.

DOI: 10.1016/0956-716x(91)90426-2

Google Scholar

[4] A. Inoue. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems, Prog. Mater. Sci. 43(5) (1998) 365-520.

DOI: 10.1016/s0079-6425(98)00005-x

Google Scholar

[5] A. P. Tsai, T. Kamiyama, Y. Kawamura, A. Inoue, T. Masumoto, Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys, Acta. Mater. 45(4) (1997) 1477-1487.

DOI: 10.1016/s1359-6454(96)00268-6

Google Scholar

[6] M. Dittrich, G. Schumacher, Evolution of crystallite size, lattice parameter and internal strain in Al precipitates during high energy ball milling of partly amorphous Al87Ni8La5 alloy, Mater. Sci. Eng. A. 604 (2014) 27–33.

DOI: 10.1016/j.msea.2014.03.004

Google Scholar

[7] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46(1–2) (2001) 1-184.

Google Scholar

[8] H. Mio, J. Kano, F. Saito, K. Kaneko, Effects of rotational direction and rotation-torevolution speed ratio in planetary ball milling, Mat. Sci. Eng. a-Struct. 332 (2002) 75–80.

DOI: 10.1016/s0921-5093(01)01718-x

Google Scholar

[9] H. Mio, J. Kano, F. Saito, K. Kaneko, Optimum revolution and rotational directions and their speeds in planetary ball milling, Int. J. Miner. Process. 74 (2004) S85–S92.

DOI: 10.1016/j.minpro.2004.07.002

Google Scholar

[10] A. Sato, J. Kano, F. Saito, Analysis of abrasion mechanism of grinding media in a planetary mill with DEM simulation, Adv. Powder Technol. 21 (2010) 212–216.

DOI: 10.1016/j.apt.2010.01.005

Google Scholar

[11] J. Ma, S. G. Zhu, C. X. Wu, M. L. Zhang, Application of back-propagation neural network technique to high-energy planetary ball milling process for synthesizing nanocomposite WC–MgO powders, Mater. Des. 30 (2009) 2867–2874.

DOI: 10.1016/j.matdes.2009.01.016

Google Scholar

[12] J. Kano, F. Saito. Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element method, Powder Technol. 98 (1998) 166–170.

DOI: 10.1016/s0032-5910(98)00039-4

Google Scholar

[13] R. Watanabe, H. Hashimoto, G. G. Lee, Computer-simulation of milling ball motion in mechanical alloying, Mater. T. Jim. 36 (1995) 102–109.

DOI: 10.2320/matertrans1989.36.102

Google Scholar

[14] H. Ashrafizadeh, M. Ashrafizaadeh, Influence of processing parameters on grinding mechanism in planetary mill by employing discrete element method, Adv. Powder Technol. 23 (2012) 708–716.

DOI: 10.1016/j.apt.2011.09.002

Google Scholar

[15] M. Magini, C. Colella, A. Iasonna, F. Padella, Power measurements during mechanical milling—II. The case of single path cumulative, solid state reaction, Acta. Mater. 46 (1998) 2841–2850.

DOI: 10.1016/s1359-6454(98)80001-3

Google Scholar

[16] A. Iasonna, M. Magini, Power measurements during mechanical milling. An experimental way to investigate the energy transfer phenomena, Acta. Mater. 44 (1996) 1109–1117.

DOI: 10.1016/1359-6454(95)00226-x

Google Scholar

[17] M. P. Dallimore, P. G. McCormick, Dynamics of planetary ball milling: a comparison of computer simulated processing parameters with CuO/Ni displacement reaction milling kinetics. Mater. T. Jim. 37 (1996) 1091–1098.

DOI: 10.2320/matertrans1989.37.1091

Google Scholar

[18] M. Magini, A. Iasonna. Energy-transfer in mechanical alloying, Mater. T. Jim. 36 (1995) 123-133.

DOI: 10.2320/matertrans1989.36.123

Google Scholar

[19] S. Rosenkranz, S. Breitung-Faes, A. Kwade, Experimental investigations and modelling of the ball motion in planetary ball mills, Powder Technol. 212 (2011) 224–230.

DOI: 10.1016/j.powtec.2011.05.021

Google Scholar

[20] X. J. Jiang, M. A. Trunov, M. Schoenitz, R. N. Dave, E. L. Dreizin, Mechanical alloying and reactive milling in a high energy planetary mill, J. Alloys Compd. 478 (2009) 246–251.

DOI: 10.1016/j.jallcom.2008.12.021

Google Scholar

[21] B. S. Murty, M. Mohan Rao, S. Ranganathan. Milling maps and amorphization during mechanical alloying. Acta Metall. Mater. 43 (1995) 2443–2450.

DOI: 10.1016/0956-7151(94)00402-1

Google Scholar

[22] R. Shashanka, D. Chaira. Optimization of milling parameters for the synthesis of nano-structured duplex and ferritic stainless steel powders by high energy planetary milling. Powder Technol. 278 (2015) 35–45.

DOI: 10.1016/j.powtec.2015.03.007

Google Scholar