Ni-Cr-Mo Alloy for Dental Prostheses with Low Melting Temperature

Article Preview

Abstract:

Ni-Cr alloys are popular for dental prostheses for the reason of economy and few better characteristics in comparison to expensive gold based alloys. However, Ni-Cr alloy developed locally has higher melting point around 1400°C as compared to that of proprietary alloys. The Ni-Cr alloys contain major alloying elements in following range: 50-80 % Ni, 10-30 % Cr, 3-10 % Mo. Minor addition is made to have requisite properties suitable for dental prostheses. In this work investigation was carried out to find out optimum chemistry to have melting point of the alloy in the range of 1100-1200°C without compromising the requisite mechanical properties. Developed alloy was characterized using Scanning Electron Microscope, Inductive Coupled Spark Plasma, Hardness Tester and Differential Scanning Calorimetry. Results were analyzed and acceptable samples tested at dental labs for trial use and suitability for dental prostheses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-305

Citation:

Online since:

September 2018

Export:

* - Corresponding Author

[1] H. Knosp, R.J. Holliday, and C.W. Corti, Gold in dentistry: alloys, uses and performance, Gold Bull., 36 (2003) 93–102.

DOI: 10.1007/bf03215496

Google Scholar

[2] S.M. Paulino, M.B. Leal, V.O. Pagnano, and O.L. Bezzon, The castability of pure titanium compared with Ni-Cr and Ni-Cr-Be alloys, J. Prosthet. Dent., 98 (2007) 445–454.

DOI: 10.1016/s0022-3913(07)60143-7

Google Scholar

[3] G.N. Flint, A metallurgical approach to metal contact dermatitis, Cont. Dermat., 39 (1998) 213-218.

Google Scholar

[4] R. Galo, R.F. Ribeiro, R.C.S. Rodrigues, L.A. Rocha, and M.da G.C.de Mattos, Effects of chemical composition on the corrosion of dental alloys, Braz. Dent. J., 23 (2012) 141-148.

DOI: 10.1590/s0103-64402012000200009

Google Scholar

[5] P. Liliana, S. C. Elena, C.L. Virgil, D.M. Laurentiu and P.S. Daniel, Corrosion behavior of Ni-Cr dental casting alloys, Int. J. Electrochem. Sci., 13 (2018) 410-423.

DOI: 10.20964/2018.01.08

Google Scholar

[6] R.W. Wassell, A.W.G. Walls, and J. G. Steele, Crowns and extra-coronal restorations: materials selection, Br. Dent. J., 192 (2002) 199-211.

DOI: 10.1038/sj.bdj.4801334

Google Scholar

[7] J. Bauer, J.F. Costa, C.N. Carvalho, R.H.M. Grande, A.D. Loguercio, and A. Reis, Characterization of two Ni–Cr dental alloys and the influence of casting mode on mechanical properties, J. Prosthodont. Res., 56 (2012) 264-271.

DOI: 10.1016/j.jpor.2012.02.004

Google Scholar

[8] P. Bartolo et al., Biomedical production of implants by additive electro-chemical and physical processes, CIRP Ann.-Manuf. Technol., 61 (2012) 635-655.

DOI: 10.1016/j.cirp.2012.05.005

Google Scholar

[9] J. Palaskar, D.V. Nadgir, and I. Shah, Effect of recasting of nickel: chromium alloy on its castability, J. Indian Prosthodont. Soc., 10 (2010) 160-164.

DOI: 10.1007/s13191-010-0033-x

Google Scholar

[10] H.W. Roberts, D.W. Berzins, B.K. Moore, and D.G. Charlton, Metal-Ceramic Alloys in Dentistry: A Review, J. Prosthodont., 18 (2009) 188-194.

DOI: 10.1111/j.1532-849x.2008.00377.x

Google Scholar

[11] R.P.O'Connor, J. R. Mackert, M. L. Myers, and E. E. Parry, Castability, opaque masking, and porcelain bonding of porcelain-fused-to-metal alloys, J. Prosthet. Dent., 75 (1996) 367-374.

DOI: 10.1016/s0022-3913(96)90027-x

Google Scholar

[12] O.L. Bezzon, R. F. Ribeiro, J. M. Rollo, and S. Crosara, Castability and resistance of ceramometal bonding in Ni-Cr and Ni-Cr-Be alloys, J. Prosthet. Dent., 85 (2001) 299-301.

DOI: 10.1067/mpr.2001.113779

Google Scholar

[13] Eutectic of Nickel-Beryllium - Google Search. [Online]. Available: https://www.google.com.pk/search?q=Ni-Be+eutectic&espv=2&source=lnms&sa=X&ved=0ahUKEwjP96yA4pz TAhVLChoKHYY0DQMQ_AUIBygA&biw=1038&bih=470&dpr=1.25#q=Eutectic+of+Nickel-Beryllium. [Accessed: 11-Apr-2017].

Google Scholar

[14] O.L. Bezzon, M. da G. de Mattos, R. F. Ribeiro, and J. M. de Almeida Rollo, Effect of beryllium on the castability and resistance of ceramometal bonds in nickel-chromium alloys, J. Prosthet. Dent., 80 (1998) 570-574.

DOI: 10.1016/s0022-3913(98)70034-4

Google Scholar

[15] P.J. Brockhurst, V.G. McLaverty, and Z. Kasloff, A castability standard for alloys used in restorative dentistry, Oper. Dent., 8 (1983) 130-135.

Google Scholar

[16] T.-I. Chai and R.S. Stein, Porosity and accuracy of multiple-unit titanium castings, J. Prosthet. Dent., 73 (1995) 534-541.

DOI: 10.1016/s0022-3913(05)80112-x

Google Scholar

[17] C. Bessing, Evaluation of the castability of four different alternative alloys by measuring the marginal sharpness, Acta Odontol. Scand., 44 (1986) 165-172.

DOI: 10.3109/00016358609026569

Google Scholar

[18] D. Chan, V. Guillory, R. Blackman, and K. Chung, The effects of sprue design on the roughness and porosity of titanium castings, J. Prosthet. Dent., 78 (1997) 400-404.

DOI: 10.1016/s0022-3913(97)70048-9

Google Scholar

[19] L. J. da Silva et al., Effect of casting atmosphere on the marginal deficiency and misfit of Ni-Cr alloys with and without beryllium, J. Prosthet. Dent., 12 (2016) 127-132.

Google Scholar

[20] J. Augustyn-Nadzieja, A. Lukaszczyk, J. Loch., Effect of remelting of the Ni-22Cr-9Mo alloy on its microstructural and electrochemical properties, Arch. Metall. Mater., 62 (2017) 411-418.

DOI: 10.1515/amm-2017-0064

Google Scholar

[21] L.L. Sousa, J.W.J Silva et al., Corrosion process development of a Ni-Cr-Mo alloy used in dental prosthesis, Intl. J. Eng. Research. Develop., 10 (2014) 70-76.

Google Scholar