Preparation of Macroprous C12A7 Mayenite Monoliths via a Sol-Gel Process with Nitrates as Precursors

Article Preview

Abstract:

Macroporous Ca12Al14O33 (C12A7) mayenite monoliths have been successfully prepared via a sol-gel process in the presence of propylene oxide (PO) and poly (ethyleneoxide) (PEO). Gelation of CaO-Al2O3 binary system with nitrates salts as additional precursors is accelerated by PO as an acid scavenger, while PEO works as a phase separation inducer to mediate the phase separation of the system. Appropriate PO and PEO amounts allow the formation of monolithic xerogel with interconnected macropores and co-continuous skeletons. The resultant dried gels are amorphous and the single crystalline phase Ca12Al14O33 mayenite forms after heat-treatment at 1100 °C in air, while the macrostructure is preserved with a porosity as high as 78% and smoother and denser skeletons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-217

Citation:

Online since:

April 2018

Export:

Price:

* - Corresponding Author

[1] G.L. Drisko, V. Luca, E. Sizgek, et al. Template synthesis and adsorption properties of hierarchically porous zirconium titanium oxides.Langmuir, 25 (2009) 5286-5293.

DOI: 10.1021/la804030h

Google Scholar

[2] C.F. Blanford, R.C. Schroden, M. Al-Daous, et al. ChemInform Abstract: Tuning Solvent‐Dependent Color Changes of Three-Dimensionally Ordered Macroporous (3DOM) Materials Through Compositional and Geometric Modifications. Cheminform, 32(2001).

DOI: 10.1002/chin.200118009

Google Scholar

[3] L. Tosheva, V.P. Valtchev. Nanozeolites:  Synthesis, Crystallization Mechanism, and Applications. Cheminform,36(2005)2494.

DOI: 10.1002/chin.200529230

Google Scholar

[4] B.J. Scott, G. Wirnsberger, G.D. Stucky. Mesoporous and Mesostructured Materials for Optical Applications. Chemistry of Materials, 13(2001)3140-3150.

DOI: 10.1021/cm0110730

Google Scholar

[5] F. Schüth. Non-siliceous Mesostructured and Mesoporous Materials. Chemistry of Materials, 13(2001).

Google Scholar

[6] X. Guo X, L. Ding, K. Kanamori, et al. Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2, adsorption. Microporous & Mesoporous Materials, 245(2017) 51-57.

DOI: 10.1016/j.micromeso.2017.02.076

Google Scholar

[7] L. Meng, X. Zhang, Y. Tang, et al. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes. Scientific Reports, 5 (2015) 7910.

DOI: 10.1038/srep07910

Google Scholar

[8] H. Tian, X. Tan, F. Xin, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy, 11 (2015) 490-499.

DOI: 10.1016/j.nanoen.2014.11.031

Google Scholar

[9] N. Yan, S. L. Cao, K. L. Yeung. Mesoporous TiO2-SiO2, aerogels with hierarchal pore structures. Microporous & Mesoporous Materials, 117(2009)570-579.

DOI: 10.1016/j.micromeso.2008.08.020

Google Scholar

[10] L. Ji, Z. Lin, A. J. Medford, et al. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2, composites as an energy storage material. Carbon, 47(2009)3346-3354.

DOI: 10.1016/j.carbon.2009.08.002

Google Scholar

[11] G. Sberveglieri, R. Murri, N. Pinto. Characterization of porous Al2O3-SiO2/Si sensor for low and medium humidity ranges. Sensors & Actuators B Chemical, 23(1995)177–180.

DOI: 10.1016/0925-4005(94)01270-r

Google Scholar

[12] L. Shen, M. Liu, X. Liu, et al. Thermal shock resistance of the porous Al2O3/ZrO2 ceramics prepared by gelcasting. Materials Research Bulletin, 42(2007)2048-(2056).

DOI: 10.1016/j.materresbull.2007.02.001

Google Scholar

[13] H. Bartl, T. Scheller, Mayenite (Ca12Al14O33) was indicated as oxygen ion conductor because of its high ion conductivity by high temperature. Neues Jahrb. Mineral., Monatsh.,35 (1970) 547.

Google Scholar

[14] J.A. Imlach, L.S.DGlasser, F.P. Glasser. Excess oxygen and the stability of 12CaO.7A12O3,. Cement & Concrete Research, 1(1970)57-61.

DOI: 10.1016/0008-8846(71)90083-4

Google Scholar

[15] H.Hosono, Y.Abe. ChemInform Abstract: Occurrence of Superoxide Radical Ion in Crystalline 12 CaO·7 Al2O3 Prepared via Solid-State Reactions. Cheminform, 28 (1987).

DOI: 10.1002/chin.198728015

Google Scholar

[16] J.Jeevaratnam, F.P. Glasser, L.S.D. Glasser, Anion Substitution and Structure of 12CaO·7A12O3. Journal of the American Ceramic Society, 47(1946)105-106.

DOI: 10.1111/j.1151-2916.1964.tb15669.x

Google Scholar

[17] T.Dong, J.Li, F.Huang, et al. One-step synthesis of phenol by O- and OH- emission material. Chemical Communications, 21(2005)27-24.

Google Scholar

[18] K.Hayashi, M.Hirano, S.Matsuishi, et al. Microporous crystal 12CaO×7Al2O3 encaging abundant O- radicals. Journal of the American Chemical Society, 124(2002)738-9.

DOI: 10.1002/chin.200222239

Google Scholar

[19] S.W. Kim, S.Matsuishi, T.Nomura, et al. Metallic state in a lime-alumina compound with nanoporous structure. Nano Letters, 7(2007)1138-1143.

DOI: 10.1021/nl062717b

Google Scholar

[20] X.Guo, X.Cai, J.Song, et al. Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol-gel process accompanied by phase separation. New Journal of Chemistry, 38(2014)5832-5839.

DOI: 10.1039/c4nj00898g

Google Scholar

[21] J.Konishi, K. Fujita S. Oiwa, et al. Crystalline ZrO2 Monoliths with Well-Defined Macropores and Mesostructured Skeletons Prepared by Combining the Alkoxy-Derived Sol–Gel Process Accompanied by Phase Separation and the Solvothermal Process. Chemistry of Materials, 20(2008).

DOI: 10.1021/cm703351d

Google Scholar

[22] A.D.C. Permana, A. Nugroho, K.Y. Chung, et al. Template-free synthesis of hierarchical porous anatase TiO2, microspheres with carbon coating and their electrochemical properties. Chemical Engineering Journal, 241(2014)216-227.

DOI: 10.1016/j.cej.2013.12.029

Google Scholar

[23] S. Yang, J.N. Kondo, K. Hayashi, et al. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO×7Al2O3. Chemistry of Materials, 16(2004)104-110.

DOI: 10.1002/chin.200413022

Google Scholar

[24] K. Hayashi, M. Hirano, H. Hosono. Excess Oxygen in 12CaO·7Al2O3 Studied by Thermogravimetric Analysis. Chemistry Letters, 34(2005)586-587.

DOI: 10.1246/cl.2005.586

Google Scholar