Effect of Molten Salts on Synthesis and Upconversion Luminescence of Ytterbium and Thulium-Doped Alkaline Yttrium Fluorides

Article Preview

Abstract:

Upconversion luminescence materials have recently received attentions because of theirs light conversion ability from infrared into visible and ultraviolet light. In this work, alkaline yttrium fluoride doped by ytterbium and thulium (AYF4: 20%Yb3+, 0.5%Tm3+) were synthesized by molten salt method at 400 °C for 2 hours with different eutectic molten salts, i.e. NaNO3-KNO3, NaNO3-LiNO3, KNO3-LiNO3, and NaNO3-KNO3-LiNO3. Pure hexagonal NaYF4 microrods were successfully synthesized using eutectic NaNO3-KNO3 molten salt. Under 980 nm laser diode excitation, upconversion luminescence in both visible and ultraviolet region was clearly observed. On the other hand, for the use of other eutectic molten salts containing LiNO3, the mixed phases of tetragonal LiYF4 and orthorhombic Y6O5F8 were obtained. These powders emitted only visible light with 10 times lower intensity than the hexagonal NaYF4 microrods synthesized using NaNO3-KNO3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-39

Citation:

Online since:

April 2018

Export:

Price:

* - Corresponding Author

[1] G. Rumbles, Solid-state optics: A laser that turns down the heat, Nature, 409 (2001) 572-73.

Google Scholar

[2] S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells, Sol. Energy Mater. Sol. Cells, 128 (2014).

DOI: 10.1016/j.solmat.2014.05.004

Google Scholar

[3] Q. Liu, W. Feng, and F. Li, Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo, Coord. Chem. Rev., 273–274 (2014) 100-10.

DOI: 10.1016/j.ccr.2014.01.004

Google Scholar

[4] Y. Tang, W. Di, X. Zhai, R. Yang, and W. Qin, NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles, ACS Catalysis, 3 (2013) 405-12.

DOI: 10.1021/cs300808r

Google Scholar

[5] W. Wang, M. Ding, C. Lu, Y. Ni, and Z. Xu, A study on upconversion UV–vis–NIR responsive photocatalytic activity and mechanisms of hexagonal phase NaYF4:Yb3+,Tm3+@TiO2 core–shell structured photocatalyst, Appl. Catal., B, 144 (2014) 379-85.

DOI: 10.1016/j.apcatb.2013.07.035

Google Scholar

[6] A. Biswas, G. Maciel, C. Friend, and P. Prasad, Upconversion properties of a transparent Er3+–Yb3+ co-doped LaF3–SiO2 glass-ceramics prepared by sol–gel method, J. Non-Cryst. Solids, 316 (2003) 393-97.

DOI: 10.1016/s0022-3093(02)01951-8

Google Scholar

[7] Y. Liu, Q. Yang, Synthesis of NaYF4 nanocrystals doped with Yb3+/Er3+ and influence of citric acid on the green and red luminescence, Opt. Commun., 284 (2011) 4496-500.

DOI: 10.1016/j.optcom.2011.05.009

Google Scholar

[8] X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling, CrystEngComm, 15 (2013) 2897-903.

DOI: 10.1039/c3ce26705a

Google Scholar

[9] A. Shalav, B. S. Richards, and M. A. Green, Luminescent layers for enhanced silicon solar cell performance: Up-conversion, Sol. Energy Mater. Sol. Cells, 91 (2007) 829-42.

DOI: 10.1016/j.solmat.2007.02.007

Google Scholar

[10] J.-C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors, J. Am. Chem. Soc., 128 (2006).

DOI: 10.1002/chin.200637007

Google Scholar

[11] M. Ding, C. Lu, Y. Ni, and Z. Xu, Rapid microwave-assisted flux growth of pure β-NaYF4:Yb3+, Ln3+ (Ln = Er, Tm, Ho) microrods with multicolor upconversion luminescence, Chem. Eng. J., 241 (2014) 477-84.

DOI: 10.1016/j.cej.2013.10.045

Google Scholar

[12] X. Zhang, P. Yang, C. Li, D. Wang, J. Xu, S. Gai, and J. Lin, Facile and mass production synthesis of β-NaYF4: Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence, Chem. Commun., 47 (2011) 12143-45.

DOI: 10.1039/c1cc15194k

Google Scholar

[13] H. Chen, X. Zhai, D. Li, L. Wang, D. Zhao, and W. Qin, Water-soluble Yb3+, Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging, J. Alloys Compd., 511 (2012) 70-73.

DOI: 10.1016/j.jallcom.2011.08.043

Google Scholar

[14] X. Huang, G. Hu, Q. Xu, X. Li, and Q. Yu, Molten-salt synthesis and upconversion of hexagonal NaYF4:Er3+:Yb3+ micro-/nano-crystals, J. Alloys Compd., 616 (2014) 652-61.

DOI: 10.1016/j.jallcom.2014.07.067

Google Scholar

[15] M. Ding, J. Xi, S. Yin, and Z. Ji, Molten salt synthesis, growth mechanism of β-NaYF4 and tunable luminescence properties of β-NaYF4:Tb3+ microrods, Superlattices Microstruct., 83 (2015) 390-400.

DOI: 10.1016/j.spmi.2015.03.026

Google Scholar

[16] M. Ding, C. Lu, L. Cao, J. Song, Y. Ni, and Z. Xu, Facile synthesis of β-NaYF4: Ln3+ (Ln= Eu, Tb, Yb/Er, Yb/Tm) microcrystals with down-and up-conversion luminescence, J. Mater. Sci., 48 (2013) 4989-98.

DOI: 10.1007/s10853-013-7285-x

Google Scholar

[17] M. Ding, W. Huang, L. Cao, C. Lu, J. Song, Y. Ni, and Z. Xu, Flux growth of honeycomb-like β-NaYF4:Yb3+, Er3+/Tm3+ crystals with multicolor upconversion luminescence, Mater. Lett., 86 (2012) 58-61.

DOI: 10.1016/j.matlet.2012.07.031

Google Scholar

[18] C. Kramer, C. Wilson, The phase diagram of NaNO3-KNO3, Thermochimica Acta, 42 (1980) 253-64.

DOI: 10.1016/0040-6031(80)85085-4

Google Scholar

[19] J. Sangster, A. Pelton, Critical coupled evaluation of phase diagrams and thermodynamic properties of binary and ternary alkali salt systems, Special Report to the Phase Equilibria Program, American Ceramic Society, Westerville, OH (1987).

Google Scholar

[20] A. Bergman, K. Nogoev, Fusion Diagram of the System Potassium, Lithium, Ammonium, Nitrate Ternary System, Zh. Neorg. Khim, 7 (1962) 351-55.

Google Scholar

[21] C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, Highly uniform and monodisperse β-NaYF4: Ln3+ (Ln= Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties, Inorg. Chem., 46 (2007) 6329-37.

DOI: 10.1021/ic070335i.s002

Google Scholar

[22] J. Zhuang, L. Liang, H. H. Sung, X. Yang, M. Wu, I. D. Williams, S. Feng, and Q. Su, Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln= Y, Dy-Yb), Inorg. Chem., 46 (2007) 5404-10.

DOI: 10.1021/ic070220e

Google Scholar

[23] F. Zhang, Photon Upconversion Nanomaterials. Springer-Verlag Berlin Heidelberg, (2015).

Google Scholar

[24] D.-X. Xu, Z.-W. Lian, M.-L. Fu, B. Yuan, J.-W. Shi, and H.-J. Cui, Advanced near-infrared-driven photocatalyst: Fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+,Tm3+@TiO2 core@shell microcrystals, Appl. Catal., B, 142–143 (2013).

DOI: 10.1016/j.apcatb.2013.05.062

Google Scholar

[25] J. Chen, J. X. Zhao, Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing, Sensors, 12 (2012) 2414-35.

Google Scholar