Adsorptive Removal of Ni(II) Ions from Aqueous Solution by Polyacrylic Acid/Attapulgite Composite Hydrogels

Article Preview

Abstract:

Polyacrylic acid/attapulgite (PAA/ATP) composite hydrogels used for removal of heavy metal ions from aqueous solution was synthesized via radical polymerization with acrylic acid (AA) and attapulgite (ATP) modified by hydrochloric acid as adsorbent. Chemical composition of the modified ATP was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) and the morphology of the PAA/ATP hydrogels was characterized by scanning electron microscope (SEM), respectively. The swelling ratio, pH-sensitivity and adsorption performance of Ni (II) ions of the composite hydrogels were studied. The results showed the swelling ratio of the PAA/ATP composite hydrogels was higher than that of PAA hydrogels and the composite hydrogels displayed sensitivity to pH values with a sharp increase of swelling ratio when the pH values increased from 4 to 6. Comparing with PAA hydrogels, the composite hydrogels obtained a larger adsorption capacity of Ni (II) ions, the average adsorption capacity could reach 72.8 mg/g and adsorption ratio could reach 84%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

859-865

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] W.J. Shi, Y. Zhou, Y.Z. Zhang, L. Li and Q.L. Yang: Water Sci. Technol. Vol. 66 (2012), p.2638.

Google Scholar

[2] A. Dabrowski, Z. Hubicki, P. Podkościelny and E. Robens: Chemosphere Vol. 56 (2004), p.91.

Google Scholar

[3] A. Demirbas: J. Hazard. Mater. Vol. 157 (2008), p.220.

Google Scholar

[4] M. Machidaa, R. Yamazakib, M. Aikawac and H. Tatsumotoa: Sep. Purif. Technol. Vol. 46 (2005), p.88.

Google Scholar

[5] J.S. Ahn, H.K. Choi and C.S. Cho: Biomaterials Vol. 22 (2001), p.923.

Google Scholar

[6] A. Sclafani and J.M. Herrmann: J. Photochem. Photobiol. A: Chem. Vol. 113 (1998), p.181.

Google Scholar

[7] Y. Bulut and Z. Baysal: J. Environ. Manage. Vol. 78 (2006), p.107.

Google Scholar

[8] G. Issabayeva, M.K. Aroua and N.M.N. Sulaiman: Bioresourc. Technol. Vol. 97 (2006), p.2350.

Google Scholar

[9] E. Álvarez-Ayuso and A. García-Sánchez: J. Hazard. Mater. Vol. 147 (2007), p.594.

Google Scholar

[10] Y.J. Zhao, Y. Chen, M.S. Li, S.Y. Zhou, A.L. Xue and W.H. Xing: J. Hazard Mater. Vol. 171 (2009), p.640.

Google Scholar

[11] H. Kaşgöz, S. Özgümüş and M. Orbay: Polymer, Vol. 44 (2003), p.1785.

Google Scholar

[12] S.P. Jin, G.R. Yue, F. Zhang, L. Feng and X.H. Yu: Chin. J. Appl. Chem. Vol. 29 (2012), p.166.

Google Scholar

[13] S.P. Jin, M.Z. Liu, F. Zhang, S.L. Chen and A.Z. Niu: Polymer, Vol. 47 (2006), p.1526.

Google Scholar

[14] Q.S. Zhang, X.W. Li, and L. Chen: Polym. Polym. Compos. Vol. 20 (2012), p.111.

Google Scholar

[15] W. Li, H. Zhao, P.R. Teasdale, R. John and S. Zhang: React. Funct. Polym. Vol. 52 (2002), p.31.

Google Scholar

[16] H. Chen and A.Q. Wang: J. Hazard. Mater. Vol. 165 (2009), p.223.

Google Scholar

[17] S.Y. Zhou, A.L. Xue, Y.J. Zhao, Q.W. Wang, Y. Chen, M.S. Li and W.H. Xing: Desalination Vol. 270 (2011), p.269.

Google Scholar

[18] X.H. Wang, Y. Zheng and A.Q. Wang: J. Hazard. Mater. Vol. 168 (2009), p.970.

Google Scholar