Adhesion Characterization of Zinc-Substituted Hydroxyapatite Coatings

Article Preview

Abstract:

In this study, hydroxyapatite and Zn-containing hydroxyapatite coatings were produced and characterized with respect to adhesion. The coating technique consists of a two-step hydrothermal process. X-ray diffraction (XRD) analyses showed that, in the first step, the coatings consisted of parascholzite (JCPDS-01-086-2372), a mixture of parascholzite and monetite (JCPDS-01-071-1759), or parascholzite and brushite (JCPDS-72-0713), depending on Zn concentration in the precursor solution. The second step consisted of an alkali conversion in a KOH solution. The final coating was identified as pure hydroxyapatite (HA) or Zn-doped hydroxyapatite, depending on the precursor solution Zn content. Scratch tests on the pure HA coatings showed higher adhesion, when compared to Zn-substituted HA coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-192

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] J.S.V. Albuquerque, R.E.F.Q. Nogueira, T.D.P. Silva, D.O. Lima, M.H. Prado da Silva, Porous triphasic calcium phosphate bioceramics, Key Eng Mater. 254-256 (2004) 1021-1024.

DOI: 10.4028/www.scientific.net/kem.254-256.1021

Google Scholar

[2] J.S.V. Albuquerque, J.V.F. Neto, J.I.L.A. Júnior, D.O. Lima, R.E.F.Q. Nogueira, M.H. Prado da Silva, Porous bioceramics produced with calcium phosphate nanoparticles, Key Eng Mater. 240-242 (2003) 23-26.

DOI: 10.4028/www.scientific.net/kem.240-242.23

Google Scholar

[3] M.H. Prado da Silva, A.F. Lemos, J.M. Ferreira, M.A. Lopes, J.D. Santos, Production of porous biomaterials based on glass-reinforced hydroxyapatite composites, Key Eng Mater. 230-232 (2002) 483-486.

DOI: 10.4028/www.scientific.net/kem.230-232.483

Google Scholar

[4] M.H. Prado Da Silva, J.H.C. Lima, G.A. Soares, C.N. Elias, M.C. Andrade, S.M. Best, I.R. Gibson, Transformation of monetite to hydroxyapatite in bioactive coatings on titanium, Surf. Coat. Technol. 137 (2001) 270–276.

DOI: 10.1016/s0257-8972(00)01125-7

Google Scholar

[5] M.H. Prado da Silva, F.N. Moura, D. Navarro da Rocha, L.A. Gobbo, A.M. Costa, L.H.L. Louro, Zinc-modified hydroxyapatite coatings obtained from parascholzite alkali conversion, Surf Coat Technol. 249 (2014) 109-117.

DOI: 10.1016/j.surfcoat.2014.03.052

Google Scholar

[6] M. Komath, P. Rajesh, C.V. Muraleedharan, H.K. Varma, R. Reshmi, M.K. Jayarajj, Formation of hydroxyapatite coating on titanium at 200ºC through pulsed laser deposition followed by hydrothermal treatment, Bull Mater Sci. 34: 2 (2011) 389-399.

DOI: 10.1007/s12034-011-0069-5

Google Scholar

[7] D. Barnes, S. Johnson, R. Snell, S Best, Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates, J. of the Mech. Behavior of Biomedical Materials 6 (2012) 128 – 138.

DOI: 10.1016/j.jmbbm.2011.10.010

Google Scholar

[8] T. Miyazaki, C. Ohtsuki, Y. Akioka, M. Tanihara, M., J. Nakao, Y. Sakaguchi, S. Konagaya, Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution, J. Mater. Sci.: Mater. Med. 14: 7 (2003), 569–574.

DOI: 10.4028/www.scientific.net/kem.218-220.133

Google Scholar