Flexible Interdigital In-Plane Supercapacitor Based on Laser Reduced Graphene Oxide (LRGO)

Article Preview

Abstract:

We Demonstrated and Verified the Use Of laser Reduced Graphene Oxide (LRGO) Supported on Polyethylene Terephthalate (PET) Substrate for Flexible Supercapacitor Applications. we Compared the Interdigitated in-Plan Structure with the Conventionally Stacked Structure Supercapacitor. To understand the Role of Increasing the Number of Sub-Electrodes per Unit Area, Three electrode Architecture of 2, 4, and 6 Sub-Electrodes were Studied. Polymeric Gel electrolyte of Poly (vinyl Alcohol) and Phosphoric Acid (PVA-H3PO4)was Selected for the Realization of the Cells. the Interdigital in – Planesupercapacitor with 6 Sub-Electrodes I-PS(6) Showed a Volumetric Capacitance Of9.3 Fcm-3 Opposed to 3.6, 0.6, 0.5 Fcm-3 for I-PS(4), I-PS(2), and conventional Structure Supercapacitor, Respectively at 0.1 Ma Cm-2 Current Density. the Maximum Stated Energy Density of 0.409 Mwh.cm-3and Power Density of 994.6 W.cm-3 were for I-PS(6). our Results clearly Showed that the LRGO can Hold much Promise for Low-Cost, Easy, and Scalablesupercapacitor Fabrication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-144

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, and Z. Geng, Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors, J. Power Sources, 242 (2013).

DOI: 10.1016/j.jpowsour.2013.05.062

Google Scholar

[2] P. Sharma and T. S. Bhatti, A review on electrochemical double-layer capacitors, Energy Convers. Manag., 51, no. 12 (2010) 2901–2912.

DOI: 10.1016/j.enconman.2010.06.031

Google Scholar

[3] A. K. Shukla, A. Banerjee, M. K. Ravikumar, and A. Jalajakshi, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochim. Acta, 84 (2012) 165–173.

DOI: 10.1016/j.electacta.2012.03.059

Google Scholar

[4] A. Ghosg and Y. Lee, A review of electrode materials for electrochemical supercapacitors, ChemsucChem, 5 (2012) 797.

Google Scholar

[5] S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon N. Y., 48 (2010) 4466–4474.

DOI: 10.1016/j.carbon.2010.08.006

Google Scholar

[6] M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors., Science, 335 (2012) 1326–30.

DOI: 10.1126/science.1216744

Google Scholar

[7] W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat. Nanotechnol., 6 (2011) 496–500.

DOI: 10.1038/nnano.2011.110

Google Scholar

[8] J. R. Miller, R. A Outlaw, and B. C. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science, 329 (2010) 1637–1639.

DOI: 10.1126/science.1194372

Google Scholar

[9] J. Xu, X. Wei, J. Cao, Y. Dong, G. Wang, Y. Xue, W. Wang, and Z. Chen, Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film, Electrochim. Acta, 152 (2015) 391–397.

DOI: 10.1016/j.electacta.2014.11.201

Google Scholar

[10] S. -Y. Huang, K. Zhang, M. M. F. Yuen, X. -Z. Fu, R. Sun, and C. -P. Wong, Facile synthesis of flexible graphene–silver composite papers with promising electrical and thermal conductivity performances, RSC Adv., 4 (2014) 34156.

DOI: 10.1039/c4ra05176a

Google Scholar

[11] P. Simon and Y. Gogotsi, Carbon À Electrolyte Systems, Acc. Chem. Res., 46 (2013) 1094.

Google Scholar

[12] L. L. Zhang, R. Zhou, and X. S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem., 20 (2010) 5983.

Google Scholar

[13] Y. G. Majid Beidaghi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro- supercapacitors, Energy Environ. Sci., 7 (2014) 867–884.

DOI: 10.1039/c3ee43526a

Google Scholar

[14] J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Ultrathin planar graphene supercapacitors, Nano Lett., 11 (2011) 1423–1427.

DOI: 10.1021/nl200225j

Google Scholar

[15] M. F. El-Kady and R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun., 4 (2013) 1475.

DOI: 10.1038/ncomms2446

Google Scholar

[16] M. Gamil, H. Nageh, I. Bkrey, S. Sayed, A. M. R. F. El-bab, K. Nakamura, O. Tabata, and A. A. El-moneim, Graphene-Based Strain Gauge on a Flexible Substrate, 26 (2014) 699–709.

DOI: 10.1108/sr-07-2015-0114

Google Scholar

[17] I. N. Bkrey and A. A. Moniem, Flexible Laser Reduced Graphene Oxide / MnO2 Electrode for Supercapacitor Applications, Int. J. Chem. Nucl. Metall. Mater. Eng., 8 (2014) 829–835.

Google Scholar

[18] S. Sayed, M. Gamil, A. M. R. Fath El-Bab, and A. A. E. M. Abd Elmoneim, LASER Reduced Graphene on Flexible Substrate for Strain Sensing Applications: Temperature Effect on Gauge Factor, Key Eng. Mater., 644 (2015) 115–119.

DOI: 10.4028/www.scientific.net/kem.644.115

Google Scholar

[19] J. Zhang and X. S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance, ChemSusChem, 5 (2012) 818–841.

DOI: 10.1002/cssc.201100571

Google Scholar