The Range of the Occurrence of α Phase in near β Titanium Alloys

Article Preview

Abstract:

Two near β titanium alloys (Ti-3Al-8V-6Cr-4Mo-4Zr and Ti-10V-2Fe-3Al) were investigated in his research. Both materials contained disperse precipitations of α phase in β phase matrix. In the case of Ti-3Al-8V-6Cr-4Mo-4Zr alloy clear segregation of alloy constituents, resulting from casting process, were observed. This segregation caused different susceptibility to α phase precipitation in dendritic and interdendritic areas in the microstructure of the investigated alloy. The influence of the temperature, strain and processing time on α phase dissolution was determined. Gleeble compression tests were performed on both of the investigated alloys. The research showed different character of the influence of strain rate and processing time on the temperature of α phase dissolution for each alloy. The effect of heat treatment on α phase dissolution during ageing of the investigated alloys was also determined. The possibility of obtaining homogenous microstructure in these alloys by properly designed heat treatment was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] C. Li, X. Wu, J.H. Chen, S. van der Zwaag, Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti–10V–2Fe–3Al, Mat. Sci. Eng. A 528 (2011) 5854–5860.

DOI: 10.1016/j.msea.2011.03.107

Google Scholar

[2] T.W. Duerig, R.M. Middleton, G.T. Terlinde, J.C. Williams, Stress Assisted Transformation in Ti‐10V‐2Fe‐3Al, Titanium 80 Science & Technology ‐ Proceedings of the 4th Int, l Conference on Titanium, (eds. ) H. Kimura, O. Izuma, vol. 2, 1980, p.1503.

DOI: 10.21236/ada074093

Google Scholar

[3] R.R. Boyer, Design properties of a high-strength titanium alloy, Ti-10V-2Fe-3Al, JOM-J. Min. Met. Mat. S. 32, 3 (1980) 61-65.

DOI: 10.1007/bf03354557

Google Scholar

[4] G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara Rao, Tensile and fracture toughness of high strength β titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures, Mater. Design 47 (2013).

DOI: 10.1016/j.matdes.2012.11.053

Google Scholar

[5] S.K. Jha, K.S. Ravi Chandran, An unusual fatigue phenomenon: duality of the S–N fatigue curve in the b-titanium alloy Ti–10V–2Fe–3Al, Scripta Mater. 48 (2003) 1207–1212.

DOI: 10.1016/s1359-6462(02)00565-1

Google Scholar

[6] A. Bhattacharjee, V.K. Varma, S.V. Kamat, A.K. Gogia, S. Bhargava, Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al, Metall. Mater. Trans. A 37 (2006) 1423-1433.

DOI: 10.1007/s11661-006-0087-x

Google Scholar

[7] D. Luquiau, X. Feaugas, M. Clavel, Cyclic softening of the Ti-10V-2Fe-3A1 titanium alloy, Mat. Sci. Eng. A 224 (1997) 146-156.

DOI: 10.1016/s0921-5093(96)10531-1

Google Scholar

[8] A. Drechsler, T. Dörr, L. Wagner, Mechanical surface treatments on Ti–10V–2Fe–3Al for improved fatigue resistance, Mat. Sci. Eng. A 243 (1998) 217–220.

DOI: 10.1016/s0921-5093(97)00804-6

Google Scholar

[9] R.R. Boyer, G.W. Kuhlman, Processing properties relationships of Ti-10V-2Fe-3Al, Metall. Trans. A 18 (1987) 2095-2103.

DOI: 10.1007/bf02647081

Google Scholar

[10] G.T. Terlinde, T.W. Duerig, J.C. Williams, Microstructure, tensile deformation, and fracture in aged Ti 10V-2Fe-3Al, Metall. Trans. A 14 (1983) 2101-2115.

DOI: 10.1007/bf02662377

Google Scholar

[11] T.W. Duerig, J.E. Allison, J.C. Williams, Microstructural influences on fatigue crack propagation in Ti-10V-2Fe-3AI, Metall. Trans. A 16 (1985) 739-751.

DOI: 10.1007/bf02814825

Google Scholar

[12] M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging, Metall. Mater. Trans. A 36 (2005) 1317-1327.

DOI: 10.1007/s11661-005-0223-z

Google Scholar

[13] D.G. Robertson, H.B. McShane, Isothermal hot deformation behaviour of metastable β titanium alloy Ti-10V-2Fe-3Al, Mater. Sci. Tech. 13 (1997) 575-583.

DOI: 10.1179/mst.1997.13.7.575

Google Scholar

[14] D.G. Robertson, H.B. McShane, Analysis of high temperature flow stress of titanium alloys IMI 550 and Ti-10V-2Fe-3Al during isothermal forging, Mater. Sci. Tech. 14 (1998) 339-345.

DOI: 10.1179/mst.1998.14.4.339

Google Scholar

[15] Y. Ren, F. Wang, S. Wang, Ch. Tan, X. Yu, J. Jiang, H. Cai, Mechanical response and effects of β-to-α' phase transformation on the strengthening of Ti–10V–2Fe–3Al during one-dimensional shock loading, Mat. Sci. Eng. A 562 (2013) 137–143.

DOI: 10.1016/j.msea.2012.10.098

Google Scholar

[16] W. Chen, Q. Sun, L. Xiao, J. Sun, Deformation-induced microstructure refinement in primary α phase-containing Ti–10V–2Fe–3Al alloy, Mat. Sci. Eng. A 527 (2010) 7225–7234.

DOI: 10.1016/j.msea.2010.07.054

Google Scholar

[17] W. Chen, Q. Sun, L. Xiao, J. Sun, Thermal stability of bulk nanocrystalline Ti–10V–2Fe–3Al alloy, Mat. Sci. Eng. A 536 (2012) 223– 230.

DOI: 10.1016/j.msea.2012.01.001

Google Scholar

[18] Y. Tomio, T. Furuhara, T. Maki, Effect of cooling rate on superelasticity and microstructure evolution in Ti-10V-2Fe-3Al and Ti-10V-2Fe-3Al-0. 2N alloys, Mater. Trans. 50, 12 (2009) 2731-2736.

DOI: 10.2320/matertrans.ma200909

Google Scholar

[19] S.K. Jha, K.S. Ravichandran, Effect of Mean Stress (Stress Ratio) and Aging on Fatigue-Crack Growth in a Metastable Beta Titanium Alloy, Ti-10V-2Fe-3Al, Metall. Mater. Trans. A 31 (2000) 703-714.

DOI: 10.1007/s11661-000-0012-7

Google Scholar

[20] S.L. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, D. Dye, The evolution of microtexture and macrotexture during subtransus forging of Ti–10V–2Fe–3Al, Mat. Sci. Eng. A 488 (2008) 8–15.

DOI: 10.1016/j.msea.2007.10.059

Google Scholar

[21] M. Jackson, N.G. Jones, D. Dye, R.J. Dashwood, Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti–10V–2Fe–3Al, Mat. Sci. Eng. A 501 (2009) 248–254.

DOI: 10.1016/j.msea.2008.09.071

Google Scholar

[22] L. Lei, X. Huang, M. Wang, L. Wang, J. Qin, H. Li, S.Q. Lu, Effect of hot compressive deformation on the martensite transformation of Ti–10V–2Fe–3Al titanium alloy, Mat. Sci. Eng. A 530 (2011) 591–601.

DOI: 10.1016/j.msea.2011.10.028

Google Scholar

[23] F. Warchomicka, M. Stockinger, H.P. Degischer, Quantitative analysis of the microstructure of near β titanium alloy during compression tests, J. Mater. Process. Tech. 177 (2006) 473–477.

DOI: 10.1016/j.jmatprotec.2006.04.022

Google Scholar

[24] R. -Q. Bao, X. Huang, Ch. -X. Cao, Deformation behavior and mechanisms of Ti- 1023 alloy, T. Nonferr. Metal. Soc. 16 (2006) 274-280.

Google Scholar

[25] M. Jackson, R.J. Dashwood, L. Christodoulou, H.M. Flower, Application of novel technique to examine thermomechanical processing of near β alloy Ti-10V-2Fe-3Al, Mater. Sci. Tech. 16 (2000) 1437-1444.

DOI: 10.1179/026708300101507433

Google Scholar

[26] V.V. Balasubrahmanyam, Y.V.R.K. Prasad, Hot deformation mechanisms in metastable beta titanium alloy Ti –10V– 2Fe – 3Al, Mater. Sci. Tech. 17 (2001) 1222-1228.

DOI: 10.1179/026708301101509296

Google Scholar

[27] T.W. Duerig, G.T. Terlinde, J.C. Williams, Phase transformations and tensile properties of Ti-10V-2Fe-3Al, Metall. Trans. A 11 (1980) 1987-(1998).

DOI: 10.21236/ada074093

Google Scholar

[28] R. Boyer, G. Welsch, Materials properties handbook: titanium alloys, ASM International (1994).

Google Scholar

[29] I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys—an overview, Mat. Sci. Eng. A 243 (1998) 46–65.

DOI: 10.1016/s0921-5093(97)00783-1

Google Scholar

[30] M. Donachie, Titanium – A technical guide, ASM International (1988).

Google Scholar

[31] S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, S.R. Seagle, Silicide formation in Ti-3AI-8V-6Cr-4Zr-4Mo, Metall. Trans. A 18 (1987) 2015-(2025).

DOI: 10.1007/bf02647074

Google Scholar

[32] A. Łukaszek-Sołek, J. Krawczyk, The analysis of the hot deformation behaviour of the Ti–3Al–8V–6Cr–4Zr–4Mo alloy, using processing maps, a map of microstructure and of hardness, Mater. Design 65 (2015) 165–173.

DOI: 10.1016/j.matdes.2014.09.023

Google Scholar

[33] G. Schroeder, T.W. Duerig, Forgeability of beta‐titanium alloys under isothermal forging conditions, Titanium Science and Technology, (eds. ) G. Luetjering et al., vol. 1, 1985, p.585‐592.

Google Scholar

[34] A. Salam, C. Hammond, Superplasticity and associated activation energy in Ti-3Al-8V-6Cr-4Mo-4Zr Alloy, J. Mater. Sci. 40 (2005) 5475–5482.

DOI: 10.1007/s10853-005-2001-0

Google Scholar

[35] J.M. Olexa, L.J. Bartlo, H.B. Bomberger, The manufacturing of aircraft-quality hydraulic tubing with the Ti-3Al-8V-6Cr-4Mo-4Zr alloy, Titanium Science and Technology, (eds. ) R.I. Jaffee et al., 1973, p.477‐488.

DOI: 10.1007/978-1-4757-1346-6_36

Google Scholar

[36] Y.M. Ahmed, K.S.M. Sahari, M. Ishak, B.A. Khidhir, Titanium and its alloy, Int. J. Sci. Res. 3, 10 (2014) 1351-1361.

Google Scholar

[37] M.A. Gaudett, J.R. Scully, Part I – the effects of pre-dissolved hydrogen on cleavage and grain boundary fracture initiation in metastable Beta Ti-3Al-8V-6Cr-4Mo-4Zr, Metall. Mater. Trans. A 30 (1999) 65-79.

DOI: 10.1007/s11661-999-0196-4

Google Scholar