Numerical Solution of Frictional Contact Problems for Viscoelastic Solids by SGBEM and Quadratic Programming

Article Preview

Abstract:

The contact problem with Coulomb friction together with a simple Kelvin-Voigt viscoelastic model is studied. The numerical solution is obtained using a time discretization by a semi-implicit formula, the visco-elastic solids in contact being discretized by Symmetric Galerkin Boundary Element Method (SGBEM). The resulting minimization problem with a nonsmooth cost functional is suitably transformed in several ways. Firstly, a transformation is performed to apply SGBEM without any viscoelastic fundamental solution. Secondly, a transformation of contact quantities leads to a minimimization with a quadratic programming structure. Numerical examples show the applicability of the proposed approach to solve rather intricate frictional contact problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-184

Citation:

Online since:

February 2016

Export:

Price:

[1] A. Blázquez, R. Vodička, F. París, and V. Mantič: Eng. Anal. Bound. Elem., Vol. 26 (2002), pp.815-826.

Google Scholar

[2] C. Eck, O. Steinbach, and W.L. Wendland: Math. Comput. Simulat., Vol. 50 (1999), pp.43-61.

Google Scholar

[3] L. Rodríguez-Tembleque, F.C. Buroni, R. Abascal and A. Sáez: Eur. J. Mech. A/Solids, Vol. 30 (2011), pp.95-104.

DOI: 10.1016/j.euromechsol.2010.09.008

Google Scholar

[4] R. Vodička, V. Mantič, and T. Roubíček: Meccanica, Vol. 49 (2014), pp.2933-296.

Google Scholar

[5] Z. Dostál: Optimal Quadratic Programming Algorithms, volume 23 of Springer Optimization and Its Applications, Springer, Berlin (2009).

DOI: 10.1007/978-0-387-84806-8_1

Google Scholar

[6] C.G. Panagiotopoulos, V. Mantič and T. Roubíček: Int. J. Solids and Struct., Vol. 51, (2014), pp.2261-2271.

Google Scholar

[7] T. Roubíček: SIAM J. Math. Anal., Vol. 45 (2013), pp.101-126.

Google Scholar

[8] T. Roubíček, C.G. Panagiotopoulos and V. Mantič: ZAMM - Zeitschrift fűr Angewandte Mathematik und Mechanik, Vol. 93 (2013), pp.823-840.

DOI: 10.1002/zamm.201200239

Google Scholar

[9] A. Mielke and T. Roubíček: Rate Independent Systems - Theory and Application, Springer, New York (2015).

Google Scholar

[10] T. Roubíček, M. Kružík, and J. Zeman, in: Mathematical Methods and Models in Composites, edited by V. Mantič, Imperial College Press (2013), pp.349-400.

Google Scholar

[11] M. Kočvara, A. Mielke, and T. Roubíček: Math. Mech. Solids, Vol. 11 (2006), pp.423-447.

Google Scholar

[12] R. Vodička, V. Mantič, and F. París: CMES - Comp. Model. Eng., Vol. 17 (2007), pp.173-203.

Google Scholar

[13] S. Bartels and M. Kružík: Multiscale Modeling & Simulation, Vol. 9 (2011), pp.1276-1300.

Google Scholar