Theoretical Investigation on Radiation Properties of Calcium-Silico-Borate Glasses Doped with Varying Lu2O3 Concentration

Article Preview

Abstract:

In this work, the well-known program WinXCom have been performed over 1 keV to 20 MeV to obtain the radiation properties (in case of theoretical calculation) of calcium-silico-borate glass system containing Lu2O3 in the composition of xLu2O3 : 10.0CaO : 10.0SiO2 : (80.0-x)B2O3 with x are Lu2O3 concentrations varying from 0.0, 5.0, 10.0, 15.0, 20.0, and 25.0 mol%. The total mass attenuation and partial attenuation coefficients have been studied as functions of chemical compositions and incoming photon energies. In addition, the obtained data were then used to compute the effective atomic numbers and effective electron densities. The calculated results show the variation of both parameters with photon energy.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 675-676)

Pages:

447-451

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] R. Sharma, V. Sharma, P.S. Singh and T. Singh, Effective atomic numbers for some calcium-strontium-borate glasses, Ann. Nucl. Energy 45 (2012) 144-149.

DOI: 10.1016/j.anucene.2012.03.005

Google Scholar

[2] M. Subhadra and P. Kistaiah, Characterization and optical absorption studies of VO2+: Li2O-K2O-Bi2O3-B2O3 glass system, Journal of Alloys and Compounds 505 (2010) 634-639.

DOI: 10.1016/j.jallcom.2010.06.097

Google Scholar

[3] V.P. Singh, N.M. Badiger, N. Chanthima and J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat. Phys. Chem. 98 (2014) 14-21.

DOI: 10.1016/j.radphyschem.2013.12.029

Google Scholar

[4] M. Erdem, O. Baykara, M. Dogru and F. Kuluozturk, A novel shielding material prepared from solid waste containing lead for gamma ray, Radiat. Phys. Chem. 79 (2010) 917-922.

DOI: 10.1016/j.radphyschem.2010.04.009

Google Scholar

[5] M. Kurudirek and Y. Ozdemir, A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids, fatty acids and carbohydrates in the energy range 0. 015–15 MeV up to 40 mean free path, Nuclear Instruments and Methods in Physics Research B 269 (2011).

DOI: 10.1016/j.nimb.2010.10.015

Google Scholar

[6] S.R. Manohara, S.M. Hanagodimath, K.S. Thind and L. Gerward, The effective atomic number revisited in the light of modern photon-interaction cross-section databases, Applied Radiation and Isotopes 68 (2010) 784-787.

DOI: 10.1016/j.apradiso.2009.09.047

Google Scholar

[7] Yu.L. Kopylov, V.B. Kravchenko, N.A. Dulina, A.V. Lopin, S.V. Parkhomenko, A.V. Tolmachev, R.P. Yavetskiy and O.V. Zelenskaya, Fabrication and characterization of Eu3+-doped Lu2O3 scintillation ceramics, Optical Materials 35 (2013) 812-816.

DOI: 10.1016/j.optmat.2012.04.020

Google Scholar

[8] W. Chewpraditkula, K. Sreebunpeng, M. Nikl, J.A. Mares, K. Nejezchleb, A. Phunpueok and C. Wanarak, Comparison of Lu3Al5O12: Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection, Radiation Measurements 47 (2012) 1-5.

DOI: 10.1016/j.radmeas.2011.08.023

Google Scholar

[9] L. An, J. Zhang, M. Liu, and S. Wang, Up-conversion properties of Yb3+, Ho3+: Lu2O3 sintered ceramic, Journal of Luminescence 122-123 (2007) 125-127.

DOI: 10.1016/j.jlumin.2006.01.118

Google Scholar

[10] L. Gerward, N. Guilbert, K.B. Jensen and H. Levring, X-ray absorption in matter. Re-engineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24.

DOI: 10.1016/s0969-806x(00)00324-8

Google Scholar

[11] M.J. Berger and J.H. Hubbell, 1987, XCOM: Photon Cross-section s on a Personal Computer, NBSIR87-3597. NIST, Gaithersburg, MD, New Version Available Online, (1995).

Google Scholar

[12] K. Kirdsiri, J. Kaewkhao, A. Pokaipisit, W. Chewpraditkul and P. Limsuwan, Gamma-rays shielding properties of xPbO : (100-x)B2O3 glasses system at 662 keV, Ann. Nucl. Energy 36 (2009) 1360-1365.

DOI: 10.1016/j.anucene.2009.06.019

Google Scholar