Adsorption Kinetics of Methylene Blue on Synthesized DMF-MIL-101(Cr), a DMF-Functionalized Metal-Organic Framework

Article Preview

Abstract:

An N, N-dimethylformamide (DMF)-functionalized metal–organic framework, namely, DMF-MIL-101(Cr), was prepared and then used for the adsorptive removal of methylene blue (MB), a cationic dye, from aqueous solutions. MIL-101(Cr) was synthesized by the hydrothermal method. Next, by dipping the MIL-101(Cr) sample in DMF, DMF-MIL-101(Cr) was synthesized. The results of X-ray diffraction analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis confirmed that DMF and MIL-101 could be combined successfully. More importantly, the MB uptake capacity of DMF-MIL-101(Cr) was significantly higher than that of MIL-101(Cr). Unlike MIL-101(Cr), DMF-MIL-101(Cr) could adsorb the entire MB in a solution with a concentration of 10.92 mg/L, owing to the electrostatic interactions between DMF and the MB molecules. In 100 mL of a 10.92-mg/L MB solution, DMF-MIL-101(Cr) can reach a state of absorbance equilibrium within10 min. After that, the adsorption process exhibited the characteristics of a zero-order reaction. This result indicates that it may be possible to exploit different functionalization methods and improve the rate of adsorption of dyes onto metal–organic frameworks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

419-424

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] Furukawa, H., et al., Science, 2013. 341: 123044-1-12.

Google Scholar

[2] Getman, R.B., et al., Chem. Rev., 2012. 112: p.703–723.

Google Scholar

[3] Sumida, K., et al/ Chem. Rev., 2012. 112: p.724–781.

Google Scholar

[4] Suh, M.P., Chem. Rev., 2012. 112: p.782–835.

Google Scholar

[5] Li, J. R., Chem. Rev., 2012. 112: p.869–932.

Google Scholar

[6] Kreno, L.E., Chem. Rev., 2012. 112: p.1105–1125.

Google Scholar

[7] Yoon, M., Chem. Rev., 2012. 112: p.1196–1231.

Google Scholar

[8] Li, S.L., et al., Energy Environ. Sci., 2013. 6: p.1656–1683.

Google Scholar

[9] Férey, G., et al., Science, 2005. 309: p.2040–(2042).

Google Scholar

[10] Hong, D.Y., et al., Adv. Funct. Mater., 2009. 19: p.1537–1552.

Google Scholar

[11] Liu, D.F., et al., Chem. Eng. Sci., 2013. 98: p.246–254.

Google Scholar

[12] Latroche, M., et al., Angew. Chem., 2006. 118: p.8407–8411.

Google Scholar

[13] Gascon, J., et al., Chem. Mater., 2011. 23: p.2565–2572.

Google Scholar

[14] Llewellyn, P.L., et al., Langmuir, 2008. 24: p.7245–7250.

Google Scholar

[15] Yadav M., et al., Chem. Commun., 2013. 49: p.3327–3329.

Google Scholar

[16] Gu, X.J., et al., Chem. Soc., 2011. 133: p.11822–11825.

Google Scholar

[17] Ahmed, I., et al., Mater., 2013. 250-251: p.37–44.

Google Scholar

[18] Yadav, M., Funct. Mater. Letts., 2012. 5: 1250039–1250042.

Google Scholar

[19] Coia-Ahlman S., et al., Water Pollut. Control Fed., 1990. 62: p.473–478.

Google Scholar

[20] Majewska-Nowak, K., et al., Desalination, 2006. 198: p.149–157.

Google Scholar

[21] Saquib, M., et al., Dyes Pigm., 2003. 56: p: 37–49.

Google Scholar

[22] Hachem, C., et al., Dyes Pigm., 2001. 49: p.117–125.

Google Scholar

[23] Abu-El-Sha'r, W.Y., et al., Environ. Geol., 2000. 39: p.1090–1094.

Google Scholar

[24] Allen, S.J., et al., Environ. Pollut., 1988. 52: p.39–53.

Google Scholar

[25] Wu, J.N., et al., Environ. Eng. -ASCE, 1998. 124: p.272–277.

Google Scholar

[26] Chen, S., et al., Desalination, 2010. 252: p.149–156.

Google Scholar

[27] Rafatullah, M., et al., Mater., 2010. 177: p.70–80.

Google Scholar

[28] Haque, E., et al., Mater., 2010. 181: p.535–542.

Google Scholar

[29] Huo, S.H., et al., Mater. Chem., 2012. 22: p.7449–7455.

Google Scholar

[30] Li, L., et al., Mater. Chem. A, 2013. 1: 10292–10299.

Google Scholar

[31] Kannan, N., et al., Dyes Pigm., 2001. 51: p.25–40.

Google Scholar

[32] Haque, E., et al. Mater. Chem. A, 2014. 2: p.193–203.

Google Scholar

[33] Kumari, G., et al., J. Phys. Chem. A, 2013. 117: p.11006–11012.

Google Scholar