Dependence of NiTi Alloy Microstructure on the Conditions of Powder Metallurgy Production

Article Preview

Abstract:

The aim of this work was to describe the dependence of microstructure of NiTi shape memory alloy on the conditions of powder metallurgy processing route. The technology consisted of blending of elemental Ni and Ti powders, uniaxial cold pressing and reactive sintering. The effects of reactive sintering temperature, heating rate, holding duration and particle size were determined. The proposed technology can be used as the alternative production route of NiTi to minimize the contamination of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-101

Citation:

Online since:

May 2015

Export:

Price:

* - Corresponding Author

[1] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson: A review of shape memory alloy research, applications and opportunities, Materials and Design 56 (2014) 1078–1113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[2] Duerig T., Pelton A., Trepanier Ch.: Nitinol - PART I Mechanisms and Behavior, SMST e-Elastic newsletter, ASM International (2011).

Google Scholar

[3] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri: Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, 57 (2012) 911-946.

DOI: 10.1016/j.pmatsci.2011.11.001

Google Scholar

[4] D. Vojtěch, M. Voděrová, J. Kubásek, P. Novák, P. Šedá, A. Michalcová, J. Fojt, J. Hanuš, O. Mestek: Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni–Ti (50. 9at. % Ni) biomedical alloy wire used for the manufacture of stents, Materials Science and Engineering: A, 528 (2011).

DOI: 10.1016/j.msea.2010.10.043

Google Scholar

[5] P. Novák, A. Michalcová, J. Šerák, D. Vojtěch, T. Fabián, S. Randáková, F. Průša, V. Knotek: M. Novák: Preparation of Ti–Al–Si alloys by reactive sintering, Journal of Alloys and Compounds 470 (2009) 123-126.

DOI: 10.1016/j.jallcom.2008.02.046

Google Scholar

[6] C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang: Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis, Materials Science and Engineering A366 (2004) 114-119.

DOI: 10.1016/j.msea.2003.08.118

Google Scholar

[7] S. Wisutmethangoon, N. Denmud, L. Sikong: Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique, Materials Science and Engineering A515 (2009) 93-97.

DOI: 10.1016/j.msea.2009.02.055

Google Scholar

[8] T.B. Massalski: Binary Alloy Phase Diagrams, ASM, Materials Park, (1990).

Google Scholar

[9] P. Novák, T. Popela, J. Kubásek, J. Šerák, D. Vojtěch, A. Michalcová: Effect of reactive sintering conditions on microstructure of in-situ titanium aluminide-silicide composites, Powder Metallurgy 54 (2011) 50-55.

DOI: 10.1179/174329009x409651

Google Scholar

[10] P. Novák, A. Michalcová, I. Marek, M. Mudrová, K. Saksl, J. Bednarčík, P. Zikmund, D. Vojtěch: On the formation of intermetallics in Fe–Al system – An in situ XRD study, Intermetallics 32 (2013) 127-136.

DOI: 10.1016/j.intermet.2012.08.020

Google Scholar