Effects of n-Type Dopants on Electronic Properties in 4H-SiC

Article Preview

Abstract:

Based on first-principles calculations, we have investigated atomic and electronic structures of 4H-SiC crystal doped by N, P and As elements as n-type dopants. We have obtained the bond lengths of the optimization system, as well as the impurity levels, the band structure and the density of states. The results show that the higher impurity level above the Fermi level is observed when 4H-SiC doped by N with concentration as 6.25% in these dopants, and the band gap of 4H-SiC decreases while the doping concentration or the atomic number of dopant increases.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

325-329

Citation:

Online since:

May 2015

Export:

Price:

* - Corresponding Author

[1] W. Ching, Y. -N. Xu, P. Rulis, L. Ouyang, The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC. Materials Science and Engineering: A 422 (2006) 147-156.

DOI: 10.1016/j.msea.2006.01.007

Google Scholar

[2] E. Konstantinova, M. Bell, V. Anjos, Ab initio calculations of some electronic and elastic properties for SiC polytypes. Intermetallics 16 (2008) 1040-1042.

DOI: 10.1016/j.intermet.2008.06.003

Google Scholar

[3] H. Morkoc, S. Strite, G. Gao, M. Lin, B. Sverdlov, M. Burns, Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies. Journal of Applied Physics 76 (1994) 1363-1398.

DOI: 10.1063/1.358463

Google Scholar

[4] H. Chen, Q. Shang, J. Hao, G. Qi, Y. Huo, K. Yang, Device Development and MESFET Epitaxy Growth on Domestic 4H-SiC SI Substrate. Semiconductor Technology (in Chinese) 33 (2008) 1007-1010.

Google Scholar

[5] A. Ellison, B. Magnusson, C. Hemmingsson, W. Magnusson, T. Iakimov, L. Storasta, A. Henry, N. Henelius, E. Janzén, in MRS Proceedings, vol. 640, pp. H1. 2.

DOI: 10.1557/proc-640-h1.2

Google Scholar

[6] L. Zhong-liang, K. Chao-yang, T. Jun, X. Peng-shou, Homoepitaxial Growth of SiC Thin Film on 4H-SiC Substrate. Journal of Synthetic Crystals (in Chinese) 41 (2012) 106-109.

Google Scholar

[7] P. Wang, Y. Yang, Y. T. Yang, H. Z. Qu, Z. D. Cui, J. X. Fu, An Ensemble Monte Carlo Study of Electron Transport in Nitrogen-Doped 4H-SiC. Acta Electronica Sinica (in Chinese) 8 (2005) 036.

Google Scholar

[8] X. W. Guo, R. H. Luo, C. Zhang, X. L. Liu, G. Y. Chu, Y. F. Huo, The impact of doping nitrogen on the electronic structure of 4H-SiC. Laser Journal (in Chinese) 32 (2012) 20-22.

Google Scholar

[9] B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics 131 (1997) 233-240.

DOI: 10.1006/jcph.1996.5612

Google Scholar

[10] P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Physical review 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[11] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41 (1990) 7892.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[12] D. M. Ceperley, B. Alder, Ground state of the electron gas by a stochastic method. Physical Review Letters 45 (1980) 566.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[13] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23 (1981) 5048.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[14] N. W. Thibault, Morphological and structural crystallography and optical properties of silicon carbide. (University of MICHIGAN, 1944).

Google Scholar

[15] C. Park, B. -H. Cheong, K. -H. Lee, K. Chang, Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Physical Review B 49 (1994) 4485.

Google Scholar