Evaluation of Annealing Effects on TiO2 Nanorod Arrays for Dye-Sensitized Solar Cells by Equivalent Circuit Analysis

Article Preview

Abstract:

TiO2 nanorod arrays (NRA) were synthesized via a facile hydrothermal method for preparing the dye-sensitized solar cells (DSSC). It was found that a post-thermal treatment facilitated enhancing the cell efficiency. The cells containing NRs underwent 500 °C annealing exhibited much higher efficiency than those un-sintered ones. Further, the internal resistance analysis was carried out to reveal the mechanism underlying the DSSC performance improvement. Specifically, the equivalent circuit model was employed to derivate the internal resistances, which was consistent with the experimental results. It was found that the sintered cells exhibited a higher series resistance and a lower shunt resistance than the un-sintered ones, suggesting the higher photocurrent density might result from the larger amount of dye loading.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

152-158

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis(2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115 (1993).

DOI: 10.1021/ja00067a063

Google Scholar

[3] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-340.

Google Scholar

[4] Y. Luo, D. Li, Q. Meng, Towards Optimization of Materials for Dye-Sensitized Solar Cells, Adv. Mater. 21 (2009) 4647-4651.

DOI: 10.1002/adma.200901078

Google Scholar

[5] T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H.V. Ryswyk, J.T. Hupp, Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1 (2008) 66-71.

DOI: 10.1039/b809672d

Google Scholar

[6] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, Md.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science 334 (2011).

DOI: 10.1126/science.1209688

Google Scholar

[7] H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells, Adv. Funct. Mater. 20 (2010) 13-17.

DOI: 10.1002/adfm.200901476

Google Scholar

[8] S. Mori, K. Sunahara, Y. Fukai, T. Kanzaki, Y. Wada, S. Yanagida, Electron transport and recombination in dye-sensitized TiO2 solar cells fabricated without sintering process, J. Phys. Chem. C 112 (2008) 20505.

DOI: 10.1021/jp8065629

Google Scholar

[9] H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, S. Dai, Retarded charge recombination in dye-sensitized nitrogen –doped TiO2 solar cells, J. Phys. Chem. C 114 (2010) 1627-1632.

DOI: 10.1021/jp9103646

Google Scholar

[10] S. Sakaguchi, H. Ueki, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, S. Hayase, Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators: Control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces, J. Photochem. Photobiol. A Chem. 164 (2004).

DOI: 10.1016/j.jphotochem.2003.11.014

Google Scholar

[11] S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Gra¨tzel, A.J. Frank, Charge recombination in dye - sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 101 (1997) 2576-2580.

DOI: 10.1021/jp962377q

Google Scholar

[12] D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Bian, Effect of annealing temperature on the photo- electrochemical properties, J. Phys. Chem. C 112 (2008) 8486-8490.

Google Scholar

[13] I. Hod, M. Shalom, Z. Tachan, S. Rühle, A. Zaban, SrTiO3 recombination-inhibiting barrier layer for type II dye-sensitized solar cells, J. Phys. Chem. C 114 (2010) 10015-10019.

DOI: 10.1021/jp101097j

Google Scholar

[14] K.E. Kim, S.R. Jang, J. Park, R. Vittal, K.J. Kim, Enhancement in the performance of dye- sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition, Sol. Energy Mater. Sol. Cells 91 (2007).

DOI: 10.1016/j.solmat.2006.10.010

Google Scholar

[15] X.Q. Gu, Y.L. Zhao, Y.H. Qiang, Influence of annealing temperature on performance of dye- sensitized TiO2 nanorod solar cells, J. Mater. Sci.: Mater. Electron. 23 (2007) 1373-1377.

DOI: 10.1007/s10854-011-0601-9

Google Scholar

[16] Y. Zhao, X. Gu, Y. Qiang, Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells, Thin Solid Films 520 (2012) 2814-2818.

DOI: 10.1016/j.tsf.2011.12.055

Google Scholar

[17] B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc. 131 (2008) 3985-3990.

DOI: 10.1021/ja8078972

Google Scholar

[18] A. Kumar, A.R. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells, J. Phys. Chem. C 114 (2010) 7787-7791.

DOI: 10.1021/jp100491h

Google Scholar

[19] D. Pysch, A. Mette, S.W. Glunz, A review and comparison of different methods to determine the series resistance of solar cells, Sol. Energy Mater. Sol. Cells, 91 (2007) 1698-1692.

DOI: 10.1016/j.solmat.2007.05.026

Google Scholar

[20] M. Murayama and T. Mori, Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis, Thin Solid Films 509 (2006) 123-127.

DOI: 10.1016/j.tsf.2005.09.145

Google Scholar

[21] M. Wolf, H. Rauschenbach, Series resistance effects on solar cell measurements, Adv. Energy Convers. 3 (1963) 455-459.

Google Scholar