The Componential and Morphological Characteristics of Cu3N Induced by Femtosecond Laser Pulses

Article Preview

Abstract:

We systematically study the componential and morphological characteristics of Cu3N films induced by femtosecond laser irradiation on glass substrate. The experimental results demonstrate that with increase of laser power, significant changes on surface morphology can be observed, and coarse ripples structures present dominantly on film surfaces after irradiated by femtosecond laser. By XRD analysis of the treated sample area, componential evolutional process from the Cu3N to Cu can be revealed at with increase of laser power, which provides an attracting application prospect in the field of utilizing microelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

135-140

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] T. Maruyama, T. Morishita, Copper nitride and tin nitride thin films for write-once optical recording media, Appl Phys Lett. 69 (1996) 890–891.

DOI: 10.1063/1.117978

Google Scholar

[2] U. Hahn, W. Weber, Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu (I) compounds, Phys Rev B. 53(1996): 12684–12693.

Google Scholar

[3] D. Wang, N. Nakamine, Y. Hayashi, Properties of various sputter-deposited Cu–N thin films, J Vac Sci Technol A. 16 (1998) 2084–(2093).

DOI: 10.1116/1.581314

Google Scholar

[4] K. J. Kim, J. H. Kim, J. H. Kang, Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering, J Crystal Growth. 222 (2001) 767–772.

DOI: 10.1016/s0022-0248(00)00968-4

Google Scholar

[5] S. Ghosh, F. Singha, D. Choudharya, D. K. Avasthia, V. Ganesanb, P. Shahb, A. Gupta, Effect of substrate temperature on the physical properties of copper nitride films by r. f. reactive sputtering, Surf Coat Technol. 142–144 (2001) 1034–1039.

DOI: 10.1016/s0257-8972(01)01091-x

Google Scholar

[6] Y. S. Lee, M. Bertoni, M. K. Chan, G. Ceder, and T. Buonassisi, Earth abundant materials for high efficiency heterojunction thin film solar cells, Photovoltaic Specialists Conference. 34 (2009) 002375-002377.

DOI: 10.1109/pvsc.2009.5411314

Google Scholar

[7] K. Umeda, A. Tasaki, Cu3N thin film for a new light recording media, Jpn J Appl Phys. 29 (1990) 1985–(1986).

DOI: 10.1143/jjap.29.1985

Google Scholar

[8] G. H. Yue, P. X. Yan, J. Z. Liu, M. X. Wang, M. Li, X. M. Yuan, Copper nitride thin film prepared by reactive radio-frequency magnetron sputtering, J Appl Phys. 98 (2005) 103506-103506-7.

DOI: 10.1063/1.2132507

Google Scholar

[9] L. Maya, Covalent nitrides for maskless laser writing of microscopic metal lines, Mater Res Soc Symp Proc. 282 (1993) 203–208.

DOI: 10.1557/proc-282-203

Google Scholar

[10] Q. Zhou, et al, Surf Coat Technol, http: /dx. doi. org/10. 1016/j. surfcoat. 2012. 08. 028.

Google Scholar

[11] R. Juza and H. Hahn, Kupfernitrid Metallamide und Metallnitride, VII. Z anorg Allg Chem. 241 (1939) 172–178.

DOI: 10.1002/zaac.19392410204

Google Scholar

[12] J. Wang, J. T. Chen, X. M. Yuan, Z. G. Wu, B. B. Miao, P. X. Yan, Copper nitride (Cu3N) thin films deposited by RF magnetron sputtering, J Cryst Growth. 286 (2006) 407-412.

DOI: 10.1016/j.jcrysgro.2005.10.107

Google Scholar

[13] W. Zhu, X. Zhang, X. N. Fu , Y. N. Zhou, S.Y. Luo, X. J. Wu, Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering, Phys Status Solidi A. 6 (2012)1-6.

DOI: 10.1002/pssa.201228175

Google Scholar

[14] T. Törndahl, M. Ottosson, J. Carlsson, Growth of copper(I) nitride by ALD using copper(II) hexafluoroacetylacetonate, water and ammonia as precursors, J Electrochem Soc. 153 (2006) C146-C151.

DOI: 10.1149/1.2160427

Google Scholar

[15] Z. Li, R.G. Gordon, Thin, continuous and conformal copper films by reduction of atomic layer deposited copper nitride, Chemical Vapour Deposition. 12 (2006) 435-441.

DOI: 10.1002/cvde.200606485

Google Scholar

[16] A. Fallberg, M. Ottosson, J. Carlsson, CVD of copper(I) nitride, Chemical Vapour Deposition. 15 (2009) 300-305.

DOI: 10.1002/cvde.200906794

Google Scholar

[17] C. Gallardo-Vega, W. de la Cruz, Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition, Appl Surf Sci. 252 (2006) 8001-8004.

DOI: 10.1016/j.apsusc.2005.10.007

Google Scholar

[18] D. M. Borsa, S. Grachev, C. Presura, D. O. Boerma, Growth and properties of Cu3N films and Cu3N/γ'-Fe4N bilayers, Appl Phys Lett. 80 (2002) 1823-1825.

DOI: 10.1063/1.1459116

Google Scholar

[19] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Thermal decomposition of copper nitride thin films and dots formation by electron beam writing, Appl Surf Sci. 169–170 (2001) 358–361.

DOI: 10.1016/s0169-4332(00)00681-4

Google Scholar

[20] R. Cremer, M. Witthaut, D. Neuschutz, C. Trappe, M. Laurenzis, O. Winkler, H. Kurz, Deposition and characterization of metastable Cu3N layers for applications in optical data storage, Mikro Acta. 133 (2000) 299-302.

DOI: 10.1007/s006040070109

Google Scholar

[21] R. Catrin, D. Horwat, J. Pierson, S. Migot, Y. Hu, F. Mücklich, Nano-scale and surface precipitation of metallic particles in laser interference patterned noble metal-based thin films, Appl Surf Sci. 257 (2011) 5223-5229.

DOI: 10.1016/j.apsusc.2010.11.060

Google Scholar

[22] D. Bäuerle, Laser Processing and Chemistry. Springer, Berlin, (2000).

Google Scholar

[23] C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, A. Tunnermann, Ablation of metals by ultrashort laser pulses, Appl Surf Sci. 14 (1997) 2716–2722.

DOI: 10.1364/cleo_europe.1996.cfa3

Google Scholar

[24] R. Gonzalez-Arrabal, N. Gordillo, M. S. Martin-Gonzalez, R. Ruiz-Bustos, F. Agulló-López, Thermal stability of copper nitride thin films: The role of nitrogen migration, J Appl Phys. 107 (2010) 103513–103513-7.

DOI: 10.1063/1.3369450

Google Scholar

[25] Y Zhu, K Mimura, M Isshiki, Oxidation Mechanism of Cu2O to CuO at 600–1050oC. Oxidation of Metals 62 (2004) 207–222.

DOI: 10.1007/s11085-004-7808-6

Google Scholar