Fabrication of CoPt Nanodot Array with a Pitch of 33 nm Using Pattern-Transfer Technique of PS-PDMS Self-Assembly

Article Preview

Abstract:

The progress of information technology has increased the demand of the capacity of storage media. Bit patterned media (BPM) has been known as a promising method to achieve the magnetic-data-storage capability of more than 1 Tb/in.2. In this work, we demonstrated fabrication of magnetic nanodot array of CoPt with a pitch of 33 nm using a pattern-transfer method of block copolymer (BCP) self-assembly. Carbon hard mask (CHM) was adopted as a mask to pattern-transfer self-assembled nanodot array formed from poly (styrene)-b-poly (dimethyl siloxane) (PS-PDMS) with a molecular weight of 30,000-7,500 mol/g. According to our experiment results, CHM showed its high selectivity against CoPt in Ar ion milling. Therefore, this result boosted the potential of BCP self-assembly technique to fabricate magnetic nanodot array for the next generation of hard disk drive (HDD) due to the ease of large-area fabrication, and low cost.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-87

Citation:

Online since:

December 2013

Export:

Price:

[1] J. K. W. Yang: Nanotechnology Vol. 22 (2011), p.385301.

Google Scholar

[2] S. Hosaka, H. Sano, M. Shirai and H. Sone: Appl. Phys. Lett. Vol. 89 (2006), p.223131.

Google Scholar

[3] C. T. Pan, S. C. Lo, J. C. Yang and Y. J. Chen: Opt. Quant. Electron Vol. 39 (2007), p.693.

Google Scholar

[4] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang: Nature Materials Vol. 4 (2005), p.455.

Google Scholar

[5] C. T. Rettner, M. E. Best, and B. D. Terris: IEEE Trans. Magn. Vol. 37 (2001), p.1649.

Google Scholar

[6] S. Hosaka, B. M. Zulfakri, M. Shirai, H. Sano, Y. Yin, A. Miyachi, and H. Sone: Appl. Phys. Express Vol. 1 (2008), p.027003.

Google Scholar

[7] M. Huda, T. Tamura, Y. Yin, and S. Hosaka: Key Eng. Mater. Vol. 497 (2011), p.122.

Google Scholar

[8] S. Hosaka, T. Akahane, M. Huda, T. Tamura, Y. Yin, N. Kihara, Y. Kamata, and A. Kikitsu: Microelectron. Eng. Vol. 88 (2011), p.2571.

Google Scholar

[9] C. A. Ross, et al.: J. Vac. Sci. Technol. B Vol. 26 (2008), p.2489.

Google Scholar

[10] M. Huda, Y. Yin, and S. Hosaka: Key Eng. Mater. AMDE Vol. 459 (2010), p.120.

Google Scholar

[11] Y. S. Jung and C. A. Ross: Nano Lett. Vol. 7 (2007), p. (2046).

Google Scholar

[12] M. Huda, T. Akahane, T. Tamura, Y. Yin, and S. Hosaka: Jpn. J. Appl. Phys. Vol. 50 (2011), p. 06GG06.

Google Scholar

[13] M. Huda, J. Liu, B. M. Zulfakri, Y. Yin, and S. Hosaka : Mater. Sci. Forum Vol. 737 (2013), p.133.

Google Scholar

[14] Software from http: /rsbweb. nih. gov/ij.

Google Scholar

[15] T. Akahane, T, Komori, J. Liu, M. Huda, B. M. Zulfakri, Y. Yin, and S. Hosaka: Key Eng. Mater. AMDE Vol. 534 (2013), p.126.

Google Scholar