Carbon Nanotube/Polymer Nanocomposites: A Brief Modeling Overview

Article Preview

Abstract:

Efforts in the field of polymeric nanocomposites reinforced by carbon nanotubes are presented in the literature from many years. The discussed problems are connected with the characterization of nanocomposites and the modeling of elastic and fracture behavior at the nanoscale. The experimental investigations and the theoretical modeling are conducted simultaneously. The theoretical approaches try to elucidate the experimental observations. In the present paper a brief overview of the analytical and numerical modeling of polymeric nanocomposites reinforced with carbon nanotubes is presented. The attention is mainly focused on the molecular dynamic models, the continuum mechanics approaches and finally the multi-scale models are discussed. The good and wrong sides of the models are pinpointed. Also a comparison between values of Young's modulus of carbon nanotube/polymer nanocomposites for various methods is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-42

Citation:

Online since:

February 2013

Export:

Price:

[1] Ajayan P.M., Carbon nanotubes, in: H.S. Nalwa (Ed. ), Nanostructured materials and nanotechnology, Academic Press, 2000, pp.329-360.

Google Scholar

[2] Srivastava D., Wei Ch., Cho K., Nanomechanics of carbon nanotubes and composites, Appl. Mech. Rev. 56 (2003) 215-231.

Google Scholar

[3] Qian D., Wagner G.J., Liu W.K., Yu M. -F., Ruoff R.S., Mechanics of carbon nanotubes, Appl. Mech. Rev. 55 (2002) 495-533.

Google Scholar

[4] Desai A.V., Haque M.A., Mechanics of the interface for carbon nanotube-polymer composites, Thin. Wall. Struct. 43 (2005) 1787-1803.

DOI: 10.1016/j.tws.2005.07.003

Google Scholar

[5] Thostenson E.T., Li C., Chou T. -W., Nanocomposites in context, Compos. Sci. Technol. 65 (2005) 491-516.

Google Scholar

[6] Gates T.S., Odegard G.M., Frankland S.J.V., Clancy T.C., Computational materials: Multi-scale modeling and simulation of nanostructured materials, Compos. Sci. Technol. 65 (2005) 2416–2434.

DOI: 10.1016/j.compscitech.2005.06.009

Google Scholar

[7] Hu H., Onyebueke L., Abatan A., Characterizing and modeling mechanical properties of nanocomposites-review and evaluation, J. Miner. Mater. Character. Eng. 9 (2010) 275-319.

DOI: 10.4236/jmmce.2010.94022

Google Scholar

[8] Shokrieh M. M., Rafiee R., A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites, Mech. Compos. Mater. 46 (2010) 155-172.

DOI: 10.1007/s11029-010-9135-0

Google Scholar

[9] Chou T. -W., Gao L., Thostenson E.T., Zhang Z., Byun J-H, An assessment of the science and technology of carbon nanotube-based fibers and composites, Compos. Sci. Technol. 70 (2010) 1–19.

DOI: 10.1016/j.compscitech.2009.10.004

Google Scholar

[10] Iijima S., Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[11] Yu M. -F., Lourie O., Dyer M.J., Moloni K., Kelly T.F., Ruoff R.S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640.

DOI: 10.1126/science.287.5453.637

Google Scholar

[12] Liu Y.J., Chen X.L., Evaluation of effective material properties of carbon nanotube-based composites using a nanoscale representative volume element, Mech. Mater. 35 (2003) 69-81.

DOI: 10.1016/s0167-6636(02)00200-4

Google Scholar

[13] Chen X.L., Liu Y.J., Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Comp. Mater. Sci. 29 (2004) 1-11.

DOI: 10.1016/s0927-0256(03)00090-9

Google Scholar

[14] Griebel M., Hamaekers J., Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites, Comput. Methods Appl. Mech. Eng. 193 (2004) 1773–1788.

DOI: 10.1016/j.cma.2003.12.025

Google Scholar

[15] Odegard G.M., Gates T., Nicholson L.M., Wise K.E., Equivalent-continuum modeling of nano-structured materials, Compos. Sci. Technol. 62 (2002) 1869-1880.

DOI: 10.1016/s0266-3538(02)00113-6

Google Scholar

[16] Buryachenko V.A., Roy A., Lafdi K., Anderson K.L., Chellapilla S., Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation, Compos. Sci. Technol. 65 (2005) 2435–2465.

DOI: 10.1016/j.compscitech.2005.08.005

Google Scholar

[17] Muc A., Design and identification methods of effective mechanical properties for carbon nanotubes, Mat. Des. 31 (2010) 1671-1675.

DOI: 10.1016/j.matdes.2009.03.046

Google Scholar

[18] Chwał M., Influence of vacancy defects on the mechanical behavior and properties of carbon nanotubes, Procedia Engineering 10 (2011) 1584-1589.

DOI: 10.1016/j.proeng.2011.04.264

Google Scholar

[19] Morse P.M., Diatomic molecules according to the wave mechanics I: Electronic levels of the hydrogen molecular ion, Phys. Rev. 33 (1929) 932-947.

DOI: 10.1103/physrev.33.932

Google Scholar

[20] Morse P.M., Diatomic molecules according to the wave mechanics II: Vibrational levels, Phys. Rev. 34 (1929) 57-64.

DOI: 10.1103/physrev.34.57

Google Scholar

[21] Belytschko T., Xiao S.P., Schatz G.C., Ruoff R., Atomistic simulations of nanotube fracture, Phys. Rev. B 65 (2002) 235430.

DOI: 10.1103/physrevb.65.235430

Google Scholar

[22] Tersoff J., New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56 (1986) 632-635.

DOI: 10.1103/physrevlett.56.632

Google Scholar

[23] Brenner D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42 (1990) 9458–9471.

DOI: 10.1103/physrevb.42.9458

Google Scholar

[24] Jones J.E., On the determination of molecular fields-i. From the variation of the viscosity of a gas with temperature, Proc. of the Royal Society 106 (1924) 441-462.

Google Scholar

[25] Jones J.E., On the determination of molecular fields-ii. From the equation of state of a gas, Proc. of the Royal Society 106 (1924) 463-469.

Google Scholar

[26] Lau K. -T., Chipara M. M., Ling H. -Y., Hui D., On the effective elastic moduli of carbon nanotubes for nanocomposite structures, Composites B 35 (2004) 95-101.

DOI: 10.1016/j.compositesb.2003.08.008

Google Scholar

[27] Frankland S.J.V., Harik V.M., Odegard G.M., Brenner D.W., Gates T.S., The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation, Compos. Sci. Technol. 63 (2003) 1655–1661.

DOI: 10.1016/s0266-3538(03)00059-9

Google Scholar

[28] Govindjee G., Sackman J.L., On the use of continuum mechanics to estimate the properties of nanotubes, Sol. State Comm. 110 (1999) 227–230.

DOI: 10.1016/s0038-1098(98)00626-7

Google Scholar

[29] Wagner H.D., Nanotube-polymer adhesion: a mechanics approach, Chem. Phys. Let. 361 (2002) 57-61.

Google Scholar

[30] Odegard G.M., Gates T.S., Wise K.E., Park C., Siochi E.J., Constitutive modeling of nanotube–reinforced polymer composites, Compos. Sci. Technol. 63 (2003) 1671–1687.

DOI: 10.1016/s0266-3538(03)00063-0

Google Scholar

[31] Hernandez E., Goze C., Bernier P., Rubio A., Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett. 80 (1998) 4502–4505.

Google Scholar

[32] Zhou X., Zhou J., and Ou-Yang Z., Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B 62 (2000) 13692–13696.

DOI: 10.1103/physrevb.62.13692

Google Scholar

[33] Yakobson B.I., Samsonidze G., Samsonidze G.G., Atomistic theory of mechanical relaxation in fullerene nanotubes, Carbon 38 (2000) 1675–1680.

DOI: 10.1016/s0008-6223(00)00093-2

Google Scholar

[34] Lu J.P., Elastic properties of single and multilayered nanotubes, J. Phys. Chem. Sol. 58 (1997) 1649–1652.

Google Scholar

[35] Pipes R.B., Hubert P., Self-consistent geometry, density and stiffness of carbon nanotubes, Proc. 17th ASC Conference, West Lafayette, (2002).

Google Scholar

[36] Li Ch., Chou T. -W., A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids. Struct. 40 (2003) 2487–2499.

Google Scholar

[37] Odegard G.M., Gates T., Nicholson L.M., Wise K.E., Equivalent-continuum modeling of nano-structured materials, Compos. Sci. Technol. 62 (2002) 1869-1880.

DOI: 10.1016/s0266-3538(02)00113-6

Google Scholar

[38] Tserpes K.I., Papanikos P., Finite element modeling of single-walled carbon nanotubes, Compos. B 36 (2005) 468–477.

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar

[39] Papanikos P., Nikolopoulos D.D., Tserpes K.I., Equivalent beams for carbon nanotubes, Comp. Mater. Sci. 43 (2008) 345–352.

DOI: 10.1016/j.commatsci.2007.12.010

Google Scholar

[40] Muc A., Chwał M., Vibration control of defects in carbon nanotubes, in: G. Stepan, L. Kovacs, A. Toth (Eds. ), Proc. IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, 30 , 2011, pp.239-246.

DOI: 10.1007/978-94-007-1643-8_27

Google Scholar

[41] Krishnan A., Dujardin E., Ebbesen T.W., Yianilos P.N., Treacy M.M.J., Young modulus of single-walled nanotubes, Phys. Rev. B 58 (1998) 14013(7).

DOI: 10.1103/physrevb.58.14013

Google Scholar

[42] Seidel G.D., Lagoudas D.C., Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites, Mech. Mat. 38 (2006) 884–907.

DOI: 10.1016/j.mechmat.2005.06.029

Google Scholar

[43] Muc A., Jamróz M., Homogenization models for carbon nanotubes, Mech. Compos. Mater. 40 (2004) 101-106.

Google Scholar

[44] Haque A., Ramasetty A., Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites, Compos. Struc. 71 (2005) 68-77.

DOI: 10.1016/j.compstruct.2004.09.029

Google Scholar

[45] Liu Y.J., Chen X.L., Evaluation of effective materials properties of carbon nanotube-based composites using a nanoscale representative volume element, Mech. Mat. 35 (2003) 69-81.

DOI: 10.1016/s0167-6636(02)00200-4

Google Scholar

[46] Chen X.L., Liu Y.J., Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Comput. Mat. Sci. 29 (2004) 1-11.

DOI: 10.1016/s0927-0256(03)00090-9

Google Scholar

[47] Li Ch., Chou T. -W., Multiscale modeling of compressive behavior of carbon nanotube/polymer composites, Compos. Sci. Technol. 66 (2006) 2409-2414.

DOI: 10.1016/j.compscitech.2006.01.013

Google Scholar

[48] Muc A., Chwał M., Banaś A., Evaluation of mechanical properties for pristine and defective carbon nanotubes and nanocomposites, Bulletin WAT 61 (2012) 135-144.

Google Scholar

[49] Tserpes K.I., Papanikos P., Labeas G., Pantelakis Sp.G., Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites, Theor. Appl. Fract. Mech. 49 (2008) 51–60.

DOI: 10.1016/j.tafmec.2007.10.004

Google Scholar