Incorporation of Magnesium Ions into Synthetic Hydroxyapatite: Synthesis and Characterization

Article Preview

Abstract:

The objective of this work is to synthesize pure and Mg-substituted hydroxyapatite (HAp) powders with different MgO content in synthesis media (in the wide range of 0.1-10.0 wt% in respect to Ca), and to study the influence of Mg2+ ions substitution on the physicochemical properties of HAp materials. In this work HAp and magnesium-substituted hydroxyapatite (Mg-HAp) were synthesized by modified wet chemical precipitation of homogenous suspension of Mg(OH)2/Ca(OH)2 and H3PO4 solution. Systematic investigation on as-synthesized and sintered Mg-HAp and HAp samples shows that the incorporation of MgO promotes decomposition of HAp to β-tricalcium phosphate (β-TCP) and significantly modified its microstructure. The effect and evidence of incorporation of Mg2+ ions into HAp structure is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

November 2012

Export:

Price:

[1] T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, E.B. Slamovich, Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials 25 (2004) 2111-2121.

DOI: 10.1016/j.biomaterials.2003.09.001

Google Scholar

[2] T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur. Spine J. 10 (2001) S96-S101.

DOI: 10.1007/s005860100282

Google Scholar

[3] S.J. Kalita, H.A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization, Mater. Sci. Eng., C 27 (2007) 837-848.

DOI: 10.1016/j.msec.2006.09.036

Google Scholar

[4] I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behavior, J. Eur. Ceram. Soc. 29 (2009) 2969-2978.

DOI: 10.1016/j.jeurceramsoc.2009.04.038

Google Scholar

[5] W.L. Suchanek, K.Byrappa, P.Shuk, R.E. Riman, V.F. Janas, K.S. TenHuisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method, Biomaterials 25 (2004) 4647-4657.

DOI: 10.1016/j.biomaterials.2003.12.008

Google Scholar

[6] K. Salma, N. Borodajenko, L. Berzina-Cimdina, Calcium phosphate bioceramics prepared from wet chemically precipitated powders, Process. Applic. Ceram. 4 [1] (2010) 45-51.

DOI: 10.2298/pac1001045s

Google Scholar

[7] J. Kolmas, A. Jaklewicz, A. Zima, M. Bućko, Z. Paszkiewicz, J. Lis, A. Ślósarczyk, W. Kolodziejski, Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physiochemical properties, J. Mol. Struct. 987 (2011) 40-50.

DOI: 10.1016/j.molstruc.2010.11.058

Google Scholar

[8] M.-J. Jiao, X.-X. Wang, Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate, Mater. Lett. 63 (2009) 2286-2289.

DOI: 10.1016/j.matlet.2009.07.048

Google Scholar

[9] W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślósarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, K. Niedzielski, Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct. 977 (2010) 145-152.

DOI: 10.1016/j.molstruc.2010.05.025

Google Scholar

[10] W.L. Suchanek, K.Byrappa, P.Shuk, R.E. Riman, V.F. Janas, K.S. TenHuisen, Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution, J. Solid State Chem. 177 (2004) 793-799.

DOI: 10.1016/j.jssc.2003.09.012

Google Scholar

[11] F. Ren, Y. Leng, R. Xin, X.Ge, Synthesis, characterization and ab intio simulation of magnesium-substituted hydroxyapatite, Acta Biomater. 6 (2010) 2787-2796.

DOI: 10.1016/j.actbio.2009.12.044

Google Scholar