The Pyrolysis Processing of Polycarbosilane Studied by TG, XRF, IR, XRD, and XPS

Article Preview

Abstract:

Polycarbosilane (PCS) is one of precursor systems applied in industry for the Polymer Infiltration Pyrolysis (PIP) processing of C or SiC fiber reinforced SiC matrix composites (Cf/SiC or SiCf/SiC CMC) materials. In this work, a series of PCS-derived SiC specimens treated at 300, 550, 800, and 1100 °C was studied by XRF, IR, XRD and XPS methods. The results show that a slight amount of PCS molecules with low softening point evaporates below 300 °C; the cross-link between PCS chains takes place to form a 3D -Si-C-Si- network via the reaction between -Si-CH3, -Si-CH2-Si- and -Si-H groups in the temperature range of 300-550 °C; an amorphous phase of SiC was observed when PCS was heated up to 800 °C, which indicates the completion of transformation from organic to inorganic; above 800 °C, β-SiC domain grows. Furthermore, a surface structure evolution of PCS-derived SiC specimens with temperature is proposed after the analyzing the XPS spectra.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

965-970

Citation:

Online since:

June 2012

Export:

Price:

[1] X.G. Zhou, Y. Yu, C.R. Zhang, et al., Mater. Sci. Eng. A, 433 (2006) 104-107.

Google Scholar

[2] H.J. Yu, X.G. Zhou, W. Zhang, et al., Composites Science and Technology 77 (2011) 699-704.

Google Scholar

[3] F. Christin, R. Naslain , P. Hagenmuller, J.J. Choury, French patent, 77/26979(1977).

Google Scholar

[4] R. Naslain, Composites Science and Technology Vol.64 (2004), p.155.

Google Scholar

[5] M. van Roode, J. Price, J. Kimmel, et al., J. Eng.r Gas Turbines and Power, Vol.129(2007), p.21.

Google Scholar

[6] P.L.N. Murthy, N.N. Nemeth, D.N. Brewer, S. Mital, Composites: Part B, Vol.39(2008), p.694.

Google Scholar

[7] J.M. Staehler, LP. Zawada , J Am. Ceram. Soc., Vol.83(7)(2000), p.1727.

Google Scholar

[8] S. Schmidt, S. Beyer, H. Immich, et al., Int. J. Appl. Ceram. Technol., Vol.2(2), p.85.

Google Scholar

[9] A. Kohyama, Y. Katoh, K. Jimbo, Materials Transactions, Vol.45, p.51.

Google Scholar

[10] R.H. Jones, D. Steiner, H.L. Heinisch, J. Nuclear Mater. Vol.87(1997), p.87.

Google Scholar

[11] T. Ishikawa, M. Sato, S. Kajii, et al., Ceram. Eng. Sci. Proc. Vol.22(3)(2001), p.471.

Google Scholar

[12] J. Lipowitz, J.A. Rabe, A. Zabgvil, X. Yu, Ceram. Eng. Sci. Proc., Vol.18(3)(1997), p.147.

Google Scholar

[13] R. Naslain, Composites Part A, Vol.29A(1998), p.1145.

Google Scholar

[14] F. Rebillat, J. Lamon, A. Guette, Acta Mater., Vol.48(2000), 4609.

Google Scholar

[15] S. Yajima, J. Hayashi, M. Omori and K. Okamura Nature, Vol.261(1976), p.683; Yajima et al., US patent, 4,052,430 (1978).

Google Scholar

[16] R.H. Baney et al., US patent, 4,737,552(1988).

Google Scholar

[17] G.N. Morscher, V.V. Pujar, "Melt-Infiltrated SiC Composites for Gas Turbine Engine Applications", ASME Paper GT2004-53196, Proceedings of ASME Turbo Expo 2004, June 14-17, 2004, Vienna, Austria.

DOI: 10.1115/gt2004-53196

Google Scholar

[18] Y. Hasegawa, K. Okamura, J. Mater. Sci., Vol.18(1983),3633.

Google Scholar

[19] E. Bouillon , F. Langlais, R. Pailler, J. Mater. Sci. Vol.26 (1991), 1333.

Google Scholar

[20] K. Jian, Z.-H. Chen, Q.-S. Ma, W.-W. Zheng, Mater. Sci. Eng. A, Vol.390(2005), p.154; H. Liu, H. Cheng, J. Wang, G. Tang, R. Che, Q. Ma, Mater. Sci. Eng. A, Vol.525(2009), p.121.

Google Scholar

[21] H. Li, L. Zhang, L. Cheng, et al., Journal of the European Ceramic Society, Vol.28 (2008), p.887.

Google Scholar

[22] C.C. Zhou, C. Zhang, H. Hu, et al., Rare Metal Mater. Eng., Vol.36 (Suppl.1) (2007), 659.

Google Scholar

[23] D.G. Shin, D.H. Riu, H.E. Kim, Journal of Ceramic Processing Research. Vol.9(2)(2008), p.209.

Google Scholar

[24] E. J. Opila, D. S. Fox, N. S.Jacobson, J. Am. Ceram. Soc., Vol.80(4)(1997), p.1009.

Google Scholar

[25] E. J. Opila, J. L. Smialek, R. C. Robinson, et al., J. Am. Ceram. Soc., Vol.82(7)(1999), p.1826.

Google Scholar

[26] H.E. Eaton, G.D. Linsey, Journal of the European Ceramic Society, Vol.22(2002), p.2741.

Google Scholar

[27] K.R. Karasek, S.A. Bradley, J.T. Done, et al., J. Am. Ceram. Soc., Vol.72(1989), p.1907.

Google Scholar

[28] M. Sreemany, T.B. Ghosh, B.C. Pai, M. Chakraborty, Mater. Res. Bull., Vol.33(1998), p.189.

Google Scholar

[29] J.G.C. Veinot et al., US patent, 7,906,672B2(2011).

Google Scholar

[30] J. F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

Google Scholar

[31] J.W. He, X. Xu, J.S. Corneille, D.W. Goodman, Surface Science, Vol.279 (1992), p.119.

Google Scholar

[32] C.D. Wanger, D.E. Passoja, H.F. Hillary, et al., J. Vac. Sci. Technol. Vol.21(1982), p.933.

Google Scholar

[33] A. Watanabe, M. Mukaida, T. Tsunoda, Y. Imai, Thin Solid Films, Vol.300 (1997), P. 95-100

Google Scholar

[34] G.D. Soraru, G. D. Andrea, A. Glisenti, Materials Letters, Vol.27 ( 1996), p.l.

Google Scholar