Numerical and Experimental Investigations on the Service Life Estimation for Hot-Forging Dies

Article Preview

Abstract:

Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element method (FEM) may serve as a means for process design and process optimisation. So far the FEM based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. An industrial forging process, where clear fatigue crack initiation has been observed is considered for a fatigue analysis. For this purpose the relevant tool component is modelled with elasto-plastic material behaviour. The predi

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

163-168

Citation:

Online since:

February 2012

Export:

Price:

[1] D. Heinemeyer, Untersuchungen zur Frage der Haltbarkeit von Schmiedegesenken, Dissertation, Universität Hannover, (1976).

Google Scholar

[2] E Haibach: Betriebsfestigkeit, Verfahren und Daten zur Bauteilberechnung 3., korrigierte und ergänzte Auflage, Berlin, Heidelberg, (2006).

Google Scholar

[3] M Hänsel, Beitrag zur Simulation der Oberflächenermüdung von Umformwerkzeugen, Springer Verlag, (1993).

DOI: 10.1007/978-3-662-06022-3

Google Scholar

[4] T. Pedersen, Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools, International Journal of Mechanical Sciences 42, (2000), pp.799-818.

DOI: 10.1016/s0020-7403(99)00019-3

Google Scholar

[5] M. Meidert, Beitrag zur deterministischen Lebensdauerabschätzung von Werkzeugen der Kaltmassivumformung, Dr-Ing. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, (2006).

Google Scholar

[6] M. Knörr, Auslegung von Massivumformprozessen gegen Versagen durch Ermüdung, Bericht aus dem Institut für Umformtechnik, Universität Stuttgart, Berlin, (1995).

DOI: 10.1007/978-3-662-05936-4

Google Scholar

[7] A. Oudin, F. Rezai-Aria, Temperature dependence of thermo-mechanical fatigue behaviour of a martensitic 5 % chromium steel, EUROMAT 2000 Advances in Mechanical Behaviour, Plasticity and Damage. 2, (2000), pp.1053-1058.

Google Scholar

[8] F. Rezai-Aria, A. Oudin, S. Jean, B. Miquel, P. Lemesle, An investigation of thermal and thermo-mechanical fatique of X38CrMoV5 (AISI H11) tool steel, 21st International Die Casting Congress & Exposition, (2005), pp.1025-1034.

Google Scholar

[9] G. A Berti, M. Monti, Thermo-mechanical fatigue life assessment of hot forging die steel, Fatigue & fracture of engineering materials & structures, 28, 2005, pp.1025-1034.

DOI: 10.1111/j.1460-2695.2005.00940.x

Google Scholar

[10] I. Schruff, Zusammenstellung der Eigenschaften und Werkstoffkennwerte der Warmarbeitsstähle X38CrMoV51, X40CrMo51, X32CrMoV33 und X38CrMoV53, Thyssen Edelstahl Technische Berichte 15 (1989), pp.70-81.

Google Scholar