Raman and Infrared Studies of Substituted β-TCP

Article Preview

Abstract:

Several substituted â-tricalcium phosphates have been prepared with different cations (monovalent, divalent and trivalent) and at various levels of substitution. Structural investigations have proved that fewer than ~10% wt substitution, the substituted compounds are isostructural to â- TCP, leading to solid solutions. These samples have been characterized by infrared and Raman spectroscopies. The vibrational spectra show mainly the bands related to the vibrations of PO43- tetrahedrons present in the structure. As Raman scattering and infrared absorption are local probes, the bands are sensitive to the local environment of the distinct tetrahedrons, related to the site of substitution and to the nature of the cations.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

225-230

Citation:

Online since:

October 2011

Export:

Price:

[1] J.C. Elliot, Structure and chemistry of the apatites and other calcium orthophosphates, Elsevier, Amsterdam, (1994).

Google Scholar

[2] N. Matsumoto, K. Yoshida, K. Hashimoto, Y. Toda, Thermal stability of β-tricalcium phosphate doped with monovalent metal ions, Mater. Res. Bull. 44 (2009) pp.1889-94.

DOI: 10.1016/j.materresbull.2009.05.012

Google Scholar

[3] L. Obadia, P. Deniard, B. Alonso, T. Rouillon, S. Jobic, J. Guicheux, M. Julien, D. Massiot, B. Bujoli, J. -M. Bouler, Effect of sodium doping in β-tricalcium phosphate on its structure and properties, Chem. Mater. 18 (2006) pp.1425-33.

DOI: 10.1021/cm052135f

Google Scholar

[4] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, Isomorphous substitutions in β- tricalcium phosphate: the different effects of zinc and strontium, J. Inorg. Biochem. 66 (1997) pp.259-65.

DOI: 10.1016/s0162-0134(96)00219-x

Google Scholar

[5] J. Marchi, A.C.S. Dantas, P. Greil, J.C. Bressiani, A.H.A. Bressiani, F.A. Müller, Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders, Mater. Res. Bull. 42 (2007) pp.1040-1050.

DOI: 10.1016/j.materresbull.2006.09.015

Google Scholar

[6] K. Yoshida, H. Hyuga, N. Kondo, H. Kita, Substitution model of monovalent (Li, Na, and K), divalent (Mg), and trivalent (Al) metal ions for β-tricalcium phosphate, J. Am. Ceram. Soc. 89 (2006) pp.688-90.

DOI: 10.1111/j.1551-2916.2005.00727.x

Google Scholar

[7] B.I. Lazoryak, V.A. Morozov, A.A. Belik, S.S. Khasanov, V.S. Shekhtman, Crystal structures and characterization of Ca9Fe(PO4)7 and Ca9FeH0. 9(PO4)7, J. Solid State Chem. 122 (1996) pp.15-21.

DOI: 10.1006/jssc.1996.0074

Google Scholar

[8] C. Mellier, F. Fayon, V. Schnitzler, P. Deniard, M. Allix, S. Quillard, D. Massiot, J. -M. Bouler, B. Bujoli, P. Janvier, Characterization and Properties of Novel Gallium-doped Calcium Phosphate Ceramics, accepted in Inorg. Chem. (2011).

DOI: 10.1021/ic2007777

Google Scholar

[9] S. Quillard, M. Paris, P. Deniard, R. Gildenhaar, G. Berger, L. Obadia, J. -M. Bouler, Structural and spectroscopic characterization of a series of potassium and/or sodium-substituted β- tricalcium phosphate, Acta Biomater. 7 (2011) pp.1844-1852.

DOI: 10.1016/j.actbio.2010.12.016

Google Scholar

[10] B. Dickens, L.W. Schroeder, W.E. Brown, Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2: I. The crystal structure of pure in β-Ca3(PO4)2, J. Solid State Chem. 10 (1974) pp.232-62.

DOI: 10.1016/0022-4596(74)90030-9

Google Scholar

[11] M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, Crystal structure analysis of β- tricalcium phosphate β-Ca3(PO4)2 by neutron powder diffraction, J. Solid State Chem. 175 (2003) pp.272-7.

DOI: 10.1016/s0022-4596(03)00279-2

Google Scholar

[12] V.A. Morozov, A.A. Belik, R.N. Kotov, I.A. Presnyakov, S.S. Khasanov, B.I. Lazoryak, Crystal structures of double calcium and alkali metal phosphates Ca10M(PO4)7 (M=Li, Na, K), Crystallogr. Rep. 45 (2000) pp.13-20.

DOI: 10.1134/1.171129

Google Scholar

[13] R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, P. Greil, Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement, Biomaterials 26 (2005) pp.3379-3384.

DOI: 10.1016/j.biomaterials.2004.09.017

Google Scholar

[14] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders, Biomaterials 23 (2002) pp.1065-1072.

DOI: 10.1016/s0142-9612(01)00218-6

Google Scholar