Assessment of Electrical Resistance Heating for Hot Formability of Ti-6Al-4V Alloy Sheet

Article Preview

Abstract:

Ti-6Al-4V (Ti64) is the most commercially used heat treatable high strength/weight ratio, high corrosion, and thermal resistance alloy in titanium alloys. However, room temperature (RT) formability of this alloy is very poor and springback after forming is very severe due to the high yield strength and low elasticity modulus. In this research, the applicability of electrical resistance heating process which is a new and rapid heating process for hot forming application is investigated in order to improve formability and eliminate springback. The electrical resistance heating method is found to be effective for T64 alloy. Results reveal that the changes in hardness and grain size of the alloy have been found inconsiderable when the method is used. Springback compensation is achieved at high temperatures and springback free part is almost produced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-136

Citation:

Online since:

March 2011

Export:

Price:

[1] F. Vollertsen, K. Lange: Annals of the CIRP Vol. 47/1 (1998) p.181.

Google Scholar

[2] P. Groche, R. Huber, J. Doerr and D. Schmoeckel: Annals of the CIRP Vol. 51/1 (2002) p.215.

Google Scholar

[3] K. Siegert, S. Jaeger and M. Vulcan: Annals of the CIRP Vol. 52/1 (2003) p.241.

Google Scholar

[4] M. Jacobson: Automotive Engineers, September (1984) p.42.

Google Scholar

[5] D. Cornette, T. Hourman, O. Hudin, J. P. Laurent and A. Reynaert: Society of Automotive Engineers (2001).

Google Scholar

[6] L. Garcia-Arandra, Y. Chastel, J. Fernandez-Pascual and T. Dal Negro: 7th ICTP Proceedings, Yokohama (2002) p.1135.

Google Scholar

[7] G. Schiessl, T. Possehn, T. Heller and S. Sikora: IDDRG Proceedings, Sindelfingen (2004) p.158.

Google Scholar

[8] R. Kolleck, D. Steinhoefer, J. -A. Feindt, P. Bruneau, T. Heller and F. Lenze: IDDRG Proceedings, Sindelfingen (2004) p.167.

Google Scholar

[9] J. Yanagimoto, K. Oyamada: CIRP Annals-Manufacturing Technology Vol. 49/1 (2000) p.209.

Google Scholar

[10] J. Yanagimoto, K. Oyamada: CIRP Annals-Manufacturing Technology Vol. 56/1 (2007) p.209.

Google Scholar

[11] M. Germain-Bonne: Metallurgie Vol. 101 (1969) p.469.

Google Scholar

[12] W. Ullrich: Werkstatt und Betrieb Vol. 55 (1969) p.339.

Google Scholar

[13] D. Valance: Metallurgia and Metal Forming (1974) p.369.

Google Scholar

[14] W. G. Karunasena: Direct resistance heating in sheet metal forming, University of Hong Kong, Department of Mechanical Engineering, Master Thesis, (1977).

Google Scholar

[15] S. Maki, A. Hamamoto, S. Saito and K. Mori: Key Engineering Materials Vol. 344 (2007) p.309.

Google Scholar

[16] K. Mori, S. Saito and S. Maki: CIRP Annals-Manufacturing Technology Vol. 57 (2008) p.321.

Google Scholar

[17] S. Maki, Y. Harada, K. Mori and H. Makino: Journal of Material Processing Technology Vol. 125-126 (2002) p.477.

Google Scholar

[18] K. Mori, S. Maki and Y. Tanaka: CIRP Annals-Manufacturing Technology Vol. 54 (2005) p.209.

Google Scholar

[19] J. Yanagimoto, R. Izumi: Journal of Materials Processing Technology Vol. 209 (2009) p.3060.

Google Scholar

[20] G. Fan, L. Gao, G. Hussain and Z. Wu: International Journal of Machine Tool & Manufacture Vol. 48 (2008) p.1688.

Google Scholar