Study of the Structure, Microstructure and Temperature Dependent Thermal Conductivity Properties of SrTiO3: Via Y3+ Substitution

Article Preview

Abstract:

Yttrium (Y) modified strontium titanate (SrTiO3) powders with initial concentration of Y in the range of 0 to 15 mol% were produced through sol-gel technique. X-ray diffraction (XRD) studies show that all the prepared compounds have a perovskite cubic structure with the space group (Pm3m). The lattice constant, lattice strain and crystallite size of the as-prepared samples were estimated from the XRD pattern which reveals the incorporation of Y into SrTiO3 system, moreover to investigate the quality of the prepared SrYT ceramics powder, the scanning electron microscopy (SEM) was used to determined investigate the morphology, grain size and its distribution. The analysis of the thermal conductivity measurements performed on the obtained powders revealed the effect of the combination of temperature and Y content on the thermal conductivity value, Indeed, the minimum thermal conductivity was 4.12 W/(mK) obtained with 15%Y at 464 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-42

Citation:

Online since:

August 2021

Export:

Price:

* - Corresponding Author

[1] V.M. Longo, M. Das Graça Sampaio Costa, A. Zirpole Simões, I.L.V. Rosa, C.O.P. Santos, J. Andrés, E. Longo, J.A. Varela, On the photoluminescence behavior of samarium-doped strontium titanate nanostructures under UV light. A structural and electronic understanding, Phys. Chem. Chem. Phys. 12 (2010) 7566–7579.

DOI: 10.1039/b923281h

Google Scholar

[2] W. Dong, B. Li, Y. Li, X. Wang, L. An, C. Li, B. Chen, G. Wang, Z. Shi, General approach to well-defined perovskite MTiO3 (M = Ba, Sr, Ca, and Mg) nanostructures, J. Phys. Chem. C. 115 (2011) 3918–3925.

DOI: 10.1021/jp110660v

Google Scholar

[3] S. Ramakanth, K.C. James Raju, Charge transfer induced magnetism in sol-gel derived nanocrystalline BaTiO3, Solid State Commun. 187 (2014) 59–63.

DOI: 10.1016/j.ssc.2014.02.010

Google Scholar

[4] M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, Carrier mediated ferromagnetism in Cr doped SrTiO3 compounds, J. Mater. Sci. Mater. Electron. 26 (2015) 6352–6365.

DOI: 10.1007/s10854-015-3223-9

Google Scholar

[5] A. Rubano, F. Ciccullo, D. Paparo, F. Miletto Granozio, U. Scotti di Uccio, L. Marrucci, Photoluminescence dynamics in strontium titanate, J. Lumin. 129 (2009) 1923–(1926).

DOI: 10.1016/j.jlumin.2009.02.037

Google Scholar

[6] A. Walsh, C.R.A. Catlow, A.G.H. Smith, A.A. Sokol, S.M. Woodley, Strontium migration assisted by oxygen vacancies in SrTiO3 from classical and quantum mechanical simulations, Phys. Rev. B - Condens. Matter Mater. Phys. 83 (2011) 220301.

DOI: 10.1103/physrevb.83.220301

Google Scholar

[7] G. Caruntu, R. Rarig, I. Dumitru, C.J. O'Connor, Annealing effects on the crystallite size and dielectric properties of ultrafine Ba1-xSrxTiO3 (0 < x < 1) powders synthesized through an oxalate-complex precursor, J. Mater. Chem. 16 (2006) 752–758.

DOI: 10.1039/b506578j

Google Scholar

[8] A.M. Neris, J.M. Ferreira, M.G. Fonseca, I.M.G. dos Santos, Undoped tetragonal ZrO2 obtained by the Pechini method: thermal evaluation of tetragonal–monoclinic phase transition and application as catalyst for biodiesel synthesis, J. Therm. Anal. Calorim. (2020).

DOI: 10.1007/s10973-020-09286-7

Google Scholar

[9] E. Van Der Veer, M. Acuautla, B. Noheda, Ferroelectric PbZr 1-x Ti x O 3 by ethylene glycol-based chemical solution synthesis, (2020).

Google Scholar

[10] M. Habib, M. Munir, F. Akram, S. Lee, T.K. Song, A. Turak, M.H. Kim, A. Hussain, Structural evolution and electromechanical properties of SrTiO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics prepared by sol-gel and hydrothermal methods, Mater. Chem. Phys. 266 (2021) 124529.

DOI: 10.1016/j.matchemphys.2021.124529

Google Scholar

[11] S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou, C.C. Chen, Hydrothermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway, J. Taiwan Inst. Chem. Eng. 45 (2014) 1927–(1936).

DOI: 10.1016/j.jtice.2014.02.003

Google Scholar

[12] M. Saranya, A.N. Grace, Hydrothermal synthesis of CuS nanostructures with different morphology, in: J. Nano Res., 2012: p.43–51.

DOI: 10.4028/www.scientific.net/jnanor.18-19.43

Google Scholar

[13] V. Moklyak, V. Chelyadyn, A. Hrubiak, B. Ostafiychuk, V. Kotsyubynsky, M. Mizilevska, M. Moklyak, R. Lisovskyy, Y. Yavorskyi, Synthesis, structure, optic and photocatalytic properties of anatase/brookite nanocomposites, J. Nano Res. 64 (2020) 39–48.

DOI: 10.4028/www.scientific.net/jnanor.64.39

Google Scholar

[14] E. Rosa Silva, M. Curi, J.G. Furtado, H.C. Ferraz, A.R. Secchi, The effect of calcination atmosphere on structural properties of Y-doped SrTiO 3 perovskite anode for SOFC prepared by solid-state reaction, Ceram. Int. 45 (2019) 9761–9770.

DOI: 10.1016/j.ceramint.2019.02.011

Google Scholar

[15] M.A. De La Rubia, P. Leret, J. De Frutos, J.F. Fernández, Effect of the synthesis route on the microstructure and the dielectric behavior of CaCu 3 Ti 4 O 12 ceramics, J. Am. Ceram. Soc. 95 (2012) 1866–1870.

DOI: 10.1111/j.1551-2916.2012.05144.x

Google Scholar

[16] Y. Li, P. Liang, X. Chao, Z. Yang, Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol-gel technique, Ceram. Int. 39 (2013) 7879–7889.

DOI: 10.1016/j.ceramint.2013.03.049

Google Scholar

[17] M. Tihtih, J.F.M. Ibrahim, E. Kurovics, M. Abdelfattah, Study on the effect of Bi dopant on the structural and optical properties of BaTiO 3 nanoceramics synthesized via sol-gel method, J. Phys. Conf. Ser. 1527 (2020) 012043.

DOI: 10.1088/1742-6596/1527/1/012043

Google Scholar

[18] M. Tihtih, A.A. PONARYADOV, J.-E.F.M. Ibrahim, E. Kurovics, E.L. KOTOVA, L.A. Gömze, Effect of temperature on the structural properties of barium titanate nanopowders synthesis via sol-gel process, Epa. - J. Silic. Based Compos. Mater. 72 (2020) 165–168.

DOI: 10.14382/epitoanyag-jsbcm.2020.27

Google Scholar

[19] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, L.M. Mei, Enhancement of thermoelectric figure of merit by doping Dy in La 0.1Sr0.9TiO3 ceramic, Mater. Res. Bull. 45 (2010) 809–812.

DOI: 10.1016/j.materresbull.2010.03.018

Google Scholar

[20] H. Muta, K. Kurosaki, S. Yamanaka, Thermoelectric properties of rare earth doped SrTiO3, J. Alloys Compd. 350 (2003) 292–295.

DOI: 10.1016/s0925-8388(02)00972-6

Google Scholar

[21] L. Li, M. Wang, D. Guo, R. Fu, Q. Meng, Effect of Gd amphoteric substitution on structure and dielectric properties of BaTiO3-based ceramics, J. Electroceramics. 30 (2013) 129–132.

DOI: 10.1007/s10832-012-9773-9

Google Scholar

[22] Z.H. Karahroudi, K. Hedayati, M. Goodarzi, Green synthesis and characterization of hexaferrite strontium-perovskite strontium photocatalyst nanocomposites, Main Gr. Met. Chem. 43 (2020) 26–42.

DOI: 10.1515/mgmc-2020-0004

Google Scholar

[23] H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, Sol-gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO 3 for efficient hydrogen production, J. Mater. Chem. 21 (2011) 11347–11351.

DOI: 10.1039/c1jm11385b

Google Scholar

[24] J. Živojinović, V.P. Pavlović, D. Kosanović, S. Marković, J. Krstić, V.A. Blagojević, V.B. Pavlović, The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders, J. Alloys Compd. 695 (2017) 863–870.

DOI: 10.1016/j.jallcom.2016.10.159

Google Scholar

[25] A. Tkach, O. Okhay, A. Almeida, P.M. Vilarinho, Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere, Acta Mater. 130 (2017) 249–260.

DOI: 10.1016/j.actamat.2017.03.051

Google Scholar

[26] A.E. Souza, G.T.A. Santos, B.C. Barra, W.D. MacEdo, S.R. Teixeira, C.M. Santos, A.M.O.R. Senos, L. Amaral, E. Longo, Photoluminescence of SrTiO 3: Influence of particle size and morphology, Cryst. Growth Des. 12 (2012) 5671–5679.

DOI: 10.1021/cg301168k

Google Scholar

[27] T. Suwannaruang, P. Kidkhunthod, T. Butburee, H.P. Shivaraju, B. Shahmoradi, K. Wantala, Facile synthesis of cooperative mesoporous-assembled CexSr1-xFexTi1-xO3 perovskite catalysts for enhancement beta-lactam antibiotic photodegradation under visible light irradiation, Surfaces and Interfaces. 23 (2021) 101013.

DOI: 10.1016/j.surfin.2021.101013

Google Scholar

[28] K. Niesz, T. Ould-Ely, H. Tsukamoto, D.E. Morse, Engineering grain size and electrical properties of donor-doped barium titanate ceramics, Ceram. Int. 37 (2011) 303–311.

DOI: 10.1016/j.ceramint.2010.08.040

Google Scholar

[29] J.U. Rahman, W.H. Nam, N. Van Du, G. Rahman, A.U. Rahman, W.H. Shin, W.S. Seo, M.H. Kim, S. Lee, Oxygen vacancy revived phonon-glass electron-crystal in SrTiO3, J. Eur. Ceram. Soc. 39 (2019) 358–365.

DOI: 10.1016/j.jeurceramsoc.2018.09.036

Google Scholar

[30] T.E. Loland, J. Sele, M.-A. Einarsrud, E. Vullum, K. Wiik, Special Double Issue Article Thermal Conductivity of A-Site Cation-Deficient La-Substituted SrTiO 3 Produced by Spark Plasma Sintering, (n.d.).

DOI: 10.1515/ehs-2014-0042

Google Scholar

[31] Y. Wang, K. Fujinami, R. Zhang, C. Wan, N. Wang, Y. Ba, K. Koumoto, Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3, Appl. Phys. Express. 3 (2010) 031101.

DOI: 10.1143/apex.3.031101

Google Scholar

[32] T.T. Khan, S.C. Ur, Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3, J. Korean Phys. Soc. 70 (2017) 93–97.

DOI: 10.3938/jkps.70.93

Google Scholar

[33] F. Azough, A. Gholinia, D.T. Alvarez-Ruiz, E. Duran, D.M. Kepaptsoglou, A.S. Eggeman, Q.M. Ramasse, R. Freer, Self-Nanostructuring in SrTiO3: A Novel Strategy for Enhancement of Thermoelectric Response in Oxides, ACS Appl. Mater. Interfaces. 11 (2019) 32833–32843.

DOI: 10.1021/acsami.9b06483

Google Scholar