Surface Modification of CdSe Quantum Dots/Titanium Dioxide Heterostructures by Conjugated Organic Ligands

Article Preview

Abstract:

Improving the charge transfer of quantum dots and the electron transport layer can greatly improve the efficiency of quantum dot sensitized solar cells (QDSSC). In this work, we used the ligand exchange method to improve the electron transfer efficiency between CdSe QDs and electron transport layer. The short chain-ligand containing disulfide bond and benzene ring conjugated structure was selected as the surface ligand of CdSe QDs. Because of its unique disulfide bond and conjugated structure, the stability and electron transfer efficiency of QDs in TiO2 layer can be effectively improved. The surface ligand has good stability and the ability to promote charge transfer, which can effectively improve the efficiency of QDSSC. By characterizing of fluorescence performance and the analysis of fluorescence lifetime, the surface of this ligand behaves fluorescence quenching phenomenon and life decay phenomenon after modification. Furthermore, photovoltaic devices constructed by the as-prepared dithiocarbamate functionalization of CdSe@TiO2 have also been assembled with the highest PCE of 5.22%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-104

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] C. J. Murphy,J. L. Coffer, Quantum dots: a primer, Applied Spectroscopy. 56 (2002) 16A-27A.

DOI: 10.1366/0003702021954214

Google Scholar

[2] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, science. 271 (1996) 933-937.

DOI: 10.1126/science.271.5251.933

Google Scholar

[3] O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland,E. H. Sargent, A charge-orbital balance picture of doping in colloidal quantum dot solids, ACS nano. 6 (2012) 8448-8455.

DOI: 10.1021/nn303364d

Google Scholar

[4] P. V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics, The journal of physical chemistry letters. 4 (2013) 908-918.

DOI: 10.1021/jz400052e

Google Scholar

[5] V. L. Colvin, M. C. Schlamp,A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature. 370 (1994) 354-357.

DOI: 10.1038/370354a0

Google Scholar

[6] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina,E. H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors, Nature. 442 (2006) 180-183.

DOI: 10.1038/nature04855

Google Scholar

[7] Y. Shirasaki, G. J. Supran, M. G. Bawendi,V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies, Nature Photonics. 7 (2013) 13-23.

DOI: 10.1038/nphoton.2012.328

Google Scholar

[8] M. A. Boles, D. Ling, T. Hyeon,D. V. Talapin, The surface science of nanocrystals, Nature materials. 15 (2016) 141-153.

DOI: 10.1038/nmat4526

Google Scholar

[9] R. D. Harris, S. Bettis Homan, M. Kodaimati, C. He, A. B. Nepomnyashchii, N. K. Swenson, S. Lian, R. Calzada,E. A. Weiss, Electronic processes within quantum dot-molecule complexes, Chemical reviews. 116 (2016) 12865-12919.

DOI: 10.1021/acs.chemrev.6b00102

Google Scholar

[10] C. R. Kagan, Flexible colloidal nanocrystal electronics, Chemical Society Reviews. 48 (2019) 1626-1641.

DOI: 10.1039/c8cs00629f

Google Scholar

[11] D. Debellis, G. Gigli, S. Ten Brinck, I. Infante,C. Giansante, Quantum-confined and enhanced optical absorption of colloidal PbS quantum dots at wavelengths with expected bulk behavior, Nano letters. 17 (2017) 1248-1254.

DOI: 10.1021/acs.nanolett.6b05087

Google Scholar

[12] P. V. Kamat, J. A. Christians,J. G. Radich, Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency, Langmuir. 30 (2014) 5716-5725.

DOI: 10.1021/la500555w

Google Scholar

[13] M. Abdellah, R. Marschan, K. Zidek, M. E. Messing, A. Abdelwahab, P. Chabera, K. Zheng,T. n. Pullerits, Hole trapping: The critical factor for quantum dot sensitized solar cell performance, The Journal of Physical Chemistry C. 118 (2014) 25802-25808.

DOI: 10.1021/jp5086284

Google Scholar

[14] M. J. Berr, P. Wagner, S. Fischbach, A. Vaneski, J. Schneider, A. S. Susha, A. L. Rogach, F. Jäckel,J. Feldmann, Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation, Applied Physics Letters. 100 (2012) 223903.

DOI: 10.1063/1.4723575

Google Scholar

[15] K. Wu, Z. Chen, H. Lv, H. Zhu, C. L. Hill,T. Lian, Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures, Journal of the American Chemical Society. 136 (2014) 7708-7716.

DOI: 10.1021/ja5023893

Google Scholar

[16] T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha,A. L. Rogach, Redox shuttle mechanism enhances photocatalytic H 2 generation on Ni-decorated CdS nanorods, Nature materials. 13 (2014) 1013-1018.

DOI: 10.1038/nmat4049

Google Scholar

[17] P. V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, The Journal of Physical Chemistry C. 112 (2008) 18737-18753.

DOI: 10.1021/jp806791s

Google Scholar

[18] H. Jun, M. Careem,A. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers, Renewable and Sustainable Energy Reviews. 22 (2013) 148-167.

DOI: 10.1016/j.rser.2013.01.030

Google Scholar

[19] D. A. Hines, M. A. Becker,P. V. Kamat, Photoinduced surface oxidation and its effect on the exciton dynamics of CdSe quantum dots, The Journal of Physical Chemistry C. 116 (2012) 13452-13457.

DOI: 10.1021/jp303659g

Google Scholar

[20] M. T. Frederick,E. A. Weiss, Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand, ACS nano. 4 (2010) 3195-3200.

DOI: 10.1021/nn1007435

Google Scholar

[21] M. T. Frederick, V. A. Amin, L. C. Cass,E. A. Weiss, A molecule to detect and perturb the confinement of charge carriers in quantum dots, Nano letters. 11 (2011) 5455-5460.

DOI: 10.1021/nl203222m

Google Scholar

[22] M. T. Frederick, V. A. Amin, N. K. Swenson, A. Y. Ho,E. A. Weiss, Control of exciton confinement in quantum dot–organic complexes through energetic alignment of interfacial orbitals, Nano letters. 13 (2013) 287-292.

DOI: 10.1021/nl304098e

Google Scholar

[23] S. Jin, M. Tagliazucchi, H.-J. Son, R. D. Harris, K. O. Aruda, D. J. Weinberg, A. B. Nepomnyashchii, O. K. Farha, J. T. Hupp,E. A. Weiss, Enhancement of the yield of photoinduced charge separation in zinc porphyrin–quantum dot complexes by a bis (dithiocarbamate) linkage, The Journal of Physical Chemistry C. 119 (2015) 5195-5202.

DOI: 10.1021/acs.jpcc.5b00074

Google Scholar

[24] S. Lian, D. J. Weinberg, R. D. Harris, M. S. Kodaimati,E. A. Weiss, Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand, ACS nano. 10 (2016) 6372-6382.

DOI: 10.1021/acsnano.6b02814

Google Scholar

[25] Y. Tan, S. Jin, R. J. Hamers, Photostability of CdSe quantum dots functionalized with aromatic dithiocarbamate ligands, ACS Applied Materials & Interfaces. 5 (2013) 12975-12983.

DOI: 10.1021/am403744g

Google Scholar

[26] G. Zotti, B. Vercelli, A. Berlin,T. Virgili, Multilayers of CdSe Nanocrystals and Bis (dithiocarbamate) Linkers Displaying Record Photoconduction, The Journal of Physical Chemistry C. 116 (2012) 25689-25693.

DOI: 10.1021/jp307125n

Google Scholar

[27] J. R. Lee, W. Li, A. J. Cowan,F. Jäckel, Hydrophilic, hole-delocalizing ligand shell to promote charge transfer from colloidal CdSe quantum dots in water, The Journal of Physical Chemistry C. 121 (2017) 15160-15168.

DOI: 10.1021/acs.jpcc.7b02949

Google Scholar

[28] H. Zhu, D. M. Coleman, C. J. Dehen, I. M. Geisler, D. Zemlyanov, J. Chmielewski, G. J. Simpson,A. Wei, Assembly of dithiocarbamate-anchored monolayers on gold surfaces in aqueous solutions, Langmuir. 24 (2008) 8660-8666.

DOI: 10.1021/la801254b

Google Scholar

[29] Y. Zhao, W. Pérez-Segarra, Q. Shi,A. Wei, Dithiocarbamate assembly on gold, Journal of the American Chemical Society. 127 (2005) 7328-7329.

DOI: 10.1021/ja050432f

Google Scholar

[30] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich,A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature. 404 (2000) 59-61.

DOI: 10.1038/35003535

Google Scholar

[31] M. S. Azzaro, M. C. Babin, S. K. Stauffer, G. Henkelman,S. T. Roberts, Can Exciton-Delocalizing Ligands Facilitate Hot Hole Transfer from Semiconductor Nanocrystals?, The Journal of Physical Chemistry C. 120 (2016) 28224-28234.

DOI: 10.1021/acs.jpcc.6b08178

Google Scholar

[32] S. Jin, R. D. Harris, B. Lau, K. O. Aruda, V. A. Amin,E. A. Weiss, Enhanced rate of radiative decay in CdSe quantum dots upon adsorption of an exciton-delocalizing ligand, Nano Letters. 14 (2014) 5323-5328.

DOI: 10.1021/nl5023699

Google Scholar

[33] P. Singhal,H. N. Ghosh, Hot‐Hole Extraction from Quantum Dot to Molecular Adsorbate, Chemistry–A European Journal. 21 (2015) 4405-4412.

DOI: 10.1002/chem.201405947

Google Scholar

[34] P. Singhal, P. V. Ghorpade, G. S. Shankarling, N. Singhal, S. K. Jha, R. M. Tripathi,H. N. Ghosh, Exciton delocalization and hot hole extraction in CdSe QDs and CdSe/ZnS type 1 core shell QDs sensitized with newly synthesized thiols, Nanoscale. 8 (2016) 1823-1833.

DOI: 10.1039/c5nr07605f

Google Scholar