Effect of Nano-Al2O3 Addition on the Densification of YSZ Electrolytes

Article Preview

Abstract:

This work investigates the effect of nanosized Al2O3 addition on the sinterability of YSZ electrolyte. (1−x)YSZ + Al2O3 ceramics with compositions x = 0 to 0.01 were prepared by the conventional mixed oxide route from a commercial powder suspension (particle size <50 nm), and sintered at 1200 to 1500°C for 2 hours in air. Densification, phase evolution, and microstructure were characterized by SEM/EDS and XRD. An improvement in sintered density was observed for the samples with 0.2 to 0.5 mol% Al2O3, though depending on the sintering temperature. Only cubic zirconia was detected as crystalline phase, although XRD features suggested chemical interactions depending upon the amount of Al2O3. The grain size of YSZ was homogeneous and no second phase segregation was detected in the tested range of incorporated nano-Al2O3 and sintering temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

June 2009

Export:

Price:

[1] M. Mori, T. Abe, H. Itoh, O. Yamamoto, Y. Takeda, T. Kawahara, Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel-cells, Solid State Ionics 74 (1994) 157-164.

DOI: 10.1016/0167-2738(94)90206-2

Google Scholar

[2] A.A.E. Hassan, N.H. Menzler, G. Blass, M.E. Ali, H.P. Buchkremer, D. Stöver, Influence of alumina dopant on the properties of yttria-stabilized zirconia for SOFC applications, J. Mater. Sci. 37 (2002) 3467-3475.

DOI: 10.1023/a:1016563123018

Google Scholar

[3] E.P. Butler, J. Drennan, Microstructural analysis of sintered high-conductivity zirconia with Al2O3 additions, J. Amer. Ceram. Soc. 65 (1982) 474-478.

DOI: 10.1111/j.1151-2916.1982.tb10336.x

Google Scholar

[4] K.C. Radford, R.J. Bratton, Zirconia electrolyte cells - Part 1: Sintering studies, J. Mater. Sci. 14 (1979) 59-65.

DOI: 10.1007/bf01028328

Google Scholar

[5] H. Bernard, Sintered Stabilized Zirconia Microstructure and Conductivity, Report R-5090, Commissariat à l' Energie Atomique, CEN-Saclay, France, (1981).

Google Scholar

[6] S. Tekeli, The solid solubility limit of Al2O3 and its effect on densification and microstructural evolution in cubic-zirconia used as an electrolyte for solid oxide fuel cell, Mater. Design 28 (2007) 713-716.

DOI: 10.1016/j.matdes.2005.09.011

Google Scholar

[7] M. Miyayama, H. Yanagida, A. Asada, Effect of Al2O3 addition on resistivity and microstructure of yttria-stabilized zirconia, Am. Ceram. Soc. Bull. 64 (1986) 660-664.

Google Scholar

[8] M. Mori, T. Abe, H. Itoh, O. Yamamoto, Y. Takeda, T. Kawahara, Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells, Solid State Ionics 74 (1994) 157-164.

DOI: 10.1016/0167-2738(94)90206-2

Google Scholar

[9] A.J. Feighery, J.T.S. Irvine, Effect of alumina additions upon electrical properties of 8 mol% yttria-stabilized zirconia, Solid State Ionics 121 (1999) 209-216.

DOI: 10.1016/s0167-2738(99)00015-6

Google Scholar

[10] S.Y. Yang, J.J. Lee, J.J. Kim, J.S. Lee, Sintering behavior of Y-doped ZrO2 ceramics: The effect of Al2O3 and Nb2O5 addition, Solid State Ionics 172 (2004) 413-416.

DOI: 10.1016/j.ssi.2004.03.026

Google Scholar

[11] L. M. Navarro, P. Recio, P. Duran, Preparation and properties evaluation of zirconia based/Al2O3 composites as electrolytes for solid oxide fuel cell systems - Part 1: Powder preparation and characterization, J. Mater. Sci. 30 (1995) 1931-(1938).

DOI: 10.1007/bf00353015

Google Scholar

[12] L. M. Navarro, P. Recio, P. Duran, Preparation and properties evaluation of zirconia based/Al2O3 composites as electrolytes for solid oxide fuel cell systems - Part 2: Sintering behaviour and microstructural development, J. Mater. Sci. 30 (1995).

DOI: 10.1007/bf00353016

Google Scholar

[13] G. Ye, F. Ju, C. Lin, S. Gopalan, U. Pal, Single-step co-firing technique for SOFC fabrication Ceram. Eng. Sci. Proc. 26 (2005) 25-32.

DOI: 10.1002/9780470291245.ch3

Google Scholar

[14] S. Wu, Sintering Additives for Zirconia Ceramics, Research Reports in Materials Science, Volume 7, Parthenon Press, Carnforth, (1986).

Google Scholar

[15] S. Tekeli, U. Demir, Colloidal processing, sintering and static grain growth behavior of alumina-doped cubic zirconia, Ceram. Int. 31 (2005) 973-980.

DOI: 10.1016/j.ceramint.2004.10.011

Google Scholar

[16] V.V. Srdic, M. Winterer, H. Hahn, Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis, J. Am. Ceram. Soc. 83 (2000) 1853-1860.

DOI: 10.1111/j.1151-2916.2000.tb01481.x

Google Scholar