Iron-Gold Coated-LiMn2-XO4 Nanowire High Power Cathode System Probed by Spectroscopic and Microstructural Analysis

Article Preview

Abstract:

The migration of lithium (Li) ions in electrode materials affects the rate performance of rechargeable Li ion batteries. Therefore, the application of LiMn2O4, which is an appealing cathode material in high power systems, requires fast electron transfer kinetics which is possible through the use of nanostructured morphologies and conductive material. Nanowires offer the advantage of a large surface to volume ratio, efficient electron conducting pathways and facile strain relaxation. In this study, LiMn2O4 nanowires with cubic spinel structure were synthesized by using a α-MnO2 nanowire-template-based method. LiMn2O4 nanowires have diameters less than 10 nm and lengths of several micrometers. Fe-Au nanoparticles were synthesized and used as coating material to improve both the catalytic activities and stability of the LiMn2O4 nanowires. The Li[Fe0.02Au0.01]Mn1.97O4 nanowires with modified architecture effectively accommodates the structural transformation during Li+ ion charge and discharge. Hence, the Li[Fe0.02Au0.01]Mn1.97O4 nanowire cathode system shows outstanding stability and enhanced electrocatalytical properties. Microstructural analysis of Li[Fe0.02Au0.01]Mn1.97O4 linked its composition and processing to its properties and performance. High resolution transmission electron microscope (HR-TEM) of the nanomaterial showed good crystallinity which contributed towards good reversibility. XRD analysis revealed a pure cubic spinel structure without any impurities. Structural information provided by Raman and solid state spectroscopy further corroborated these findings. The improved rate and cycling performance is related to the conductive particles infused within the nanowires which make up the electrode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-20

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem, 21 (2011) 9938.

DOI: 10.1039/c0jm04225k

Google Scholar

[2] Y.S. Kim, H. Kanoh, T. Horotsu, K. Ooi, Chemical bonding of ion-exchange type sites in spinel-type manganese oxides Li1. 33Mn1. 67O4, Mat Res Bull. 37 (2002) 391.

DOI: 10.1016/s0025-5408(01)00776-0

Google Scholar

[3] A. Poullikkas, A comparative overview of large-scale battery systems for electricity storage, Renew Sust Energ Rev. 27 (2013) 778–788.

DOI: 10.1016/j.rser.2013.07.017

Google Scholar

[4] E. Lee, K. A. Persson, Revealing the coupled cation interactions behind the electrochemical profile of LixNi0. 5Mn1. 5O4, Energy Environ. Sci. 5 (2012) 6047.

DOI: 10.1039/c2ee03068c

Google Scholar

[5] S. S. Zhang, Status, opportunities, and challenges of electrochemical energy storage, Front. Energy Res. 1, (2013) 8.

Google Scholar

[6] M. K. Sunkara, C. Pendyala, D. Cummins, P. Meduri, J. Jasinski, V. Kumar, H. B. Russell, E. L. Clark and J.H. Kim, Inorganic nanowires: a perspective about their role in energy conversion and storage applications, J. Phys. D: Appl. Phys. 44 (2011).

DOI: 10.1088/0022-3727/44/17/174032

Google Scholar

[7] Y. K. Sun, Y.S. Jeon, H.J. Leeb, Overcoming Jahn-teller distortion for spinel mn phase, Electrochem Solid-State Lett. 3 (2000) 7.

DOI: 10.1149/1.1390942

Google Scholar

[8] N. West, K. I. Ozoemena, C. O. Ikpo, P. G.L. Baker, E. I. Iwuoha, Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes, Electrochim Acta, 101 (2013) 86.

DOI: 10.1016/j.electacta.2012.11.085

Google Scholar

[9] P. Thoniyot, M. J. Tan, A. A. Karim, D. J. Young, J. Xian, Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials, Adv. Sci. 2 (2015) 1400010.

DOI: 10.1002/advs.201400010

Google Scholar

[10] D. Zheng, S. Sun, W. Fan, H. Yu, C. Fan, G. Cao, Z. Yin, X. Song, One step preparation of single-crystalline beta MnO2 nanotubes, J Phys Chem B. 109 (2005) 16439.

DOI: 10.1021/jp052370l

Google Scholar

[11] J. Liu, A. Manthiram, Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1. 5Ni0. 5O4, J. Phys. Chem. C, 113 (2009) 15073–15079.

DOI: 10.1021/jp904276t

Google Scholar

[12] P. Dash, T. Bond, C. Fowler, W. Hou, N. Coombs, R. W. Scott, Rational Design of Supported PdAu Nanoparticle Catalysts from Structured Nanoparticle Precursors, J. Phys. Chem. C, 113 (2009) 12719.

DOI: 10.1021/jp9037182

Google Scholar

[13] Z. Yin, Y. Zhang, K. Chen, J. Li, W. Li, P. Tang, H. Zhao, Q. Zhu, X. Bao, D. Ma, Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation, Sci. Rep , 4 (2013) 4288.

DOI: 10.1038/srep04288

Google Scholar

[14] W-J. Liu, T-T. Qian, H. Jiang, Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants, Chem. Eng. J, (2014) 448–463.

DOI: 10.1016/j.cej.2013.10.062

Google Scholar

[15] R. Medwal, N. Sehdev, S. Annapoorni, Temperature-dependent magnetic and structural ordering of self-assembled magnetic array of FePt nanoparticles, J. Nanopart. Res, 15 (2013) 1-10.

DOI: 10.1007/s11051-013-1423-x

Google Scholar

[16] M. Liao, H. Tang, Y. Chiu, J. Huan, M. Wu, Local electronic structure of LiMn2O4 probed by solid state 7Li-NMR, J. Phys. Chem. Solids, 62 (2001) 1893.

DOI: 10.1016/s0022-3697(01)00121-4

Google Scholar

[17] A. R. Naghash, J. Y. Lee, Preparation of spinel lithium manganese oxide by aqueous co-precipitation, J. Power Sources, 85 (2000) 284.

DOI: 10.1016/s0378-7753(99)00347-x

Google Scholar

[18] M.B. Ley, D. B. Ravnsbæk,Y. Filinchuk, Y. -S. Lee, R. Janot, Y. W. Cho, J. Skibsted, T. R. Jensen, LiCe(BH4)3Cl, a New Lithium-Ion Conductor and Hydrogen StorageMaterial with Isolated Tetranuclear Anionic Clusters, Chem. Mater, 24 (2012).

DOI: 10.1021/cm300792t

Google Scholar

[19] K. Hoang, Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn2O4 spinel, J. Mater. Chem, 2 (2014) 18271-18280.

DOI: 10.1039/c4ta04116j

Google Scholar

[20] X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S. P. Ong, H. Chen, A. Toumar, J-C. Idrobo, Y. Lei, J. Bai, F. Wang, J.W. Lynn, Y. S. Lee, Gerbrand Ceder, Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2, Nat. Mater, 13 (2014).

DOI: 10.1038/nmat3964

Google Scholar

[21] S. Martinez,   I. Sobrados,   D. Tonti,  J. M. Amarilla,  J. Sanz, Chemical vs. electrochemical extraction of lithium from the Li-excess Li1. 10Mn1. 90O4 spinel followed by NMR and DRX techniques, Phys. Chem. Chem. Phys, 16 (2014) 3282-3291.

DOI: 10.1039/c3cp54386b

Google Scholar

[22] J.F. Ni,H.H. Zhou J.T. Chen X.X. Zhang, LiFePO4 doped with ions prepared by coprecipitation method, Mat. Lett. 59 (2005) 2361.

Google Scholar

[23] L. Yu, D. Cai, H. Wang, M-M Titirici, Synthesis of Microspherical LiFePO4-Carbon Composites for Lithium-Ion Batteries, Nanomaterials, 3 (2013) 443-452.

DOI: 10.3390/nano3030443

Google Scholar

[24] J. Xu, G. Hou, H. Li, T. Zhai, B. Dong, H. Yan, Y. Wang, B. Yu, Y. Bando, D. Golberg, Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission, NPG Asia Mat, 5 (2013) 25.

DOI: 10.1038/am.2013.25

Google Scholar

[25] T. -F. Yi, C. -Y. Li, Y. -R. Zhu, R. -S. Zhu, J. Shu, Electrochemical intercalation kinetics of lithium ions for spinel LiNi0. 5 Mn1. 5 O4 cathode material, Russ J Electrochem+, 46 (2010) 227.

DOI: 10.1134/s1023193510020151

Google Scholar

[26] S-Y. Xu, X-Y. Wu, Y-M. Li, Y-S. Hu, L-Q. Chen, Novel copper redox-based cathode materials for room-temperature sodium-ion batteries, Chin. Phys. B, 23 (2014) 118202.

DOI: 10.1088/1674-1056/23/11/118202

Google Scholar

[27] Z. Yin, D. Ma, X. H. Bao, Emulsion-assisted synthesis of monodisperse binary metal nanoparticles, Chem. Commun, 46 (2010) 1344-1346.

DOI: 10.1039/b920169f

Google Scholar

[28] F. Li, D. Pan, M. Lin, H. Han, X. Hu, Q. Kang, Electrochemical determination of iron in coastal waters based on ionic liquid-reduced graphene oxide supported gold nanodendrites, Electrochim. Acta, 176 (2015) 548–554.

DOI: 10.1016/j.electacta.2015.07.011

Google Scholar

[29] W. Yan, J.Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, R. M. Penner, Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage, Chem. Mater. 24 (2012).

DOI: 10.1021/cm3011474

Google Scholar