Development of a Mathematical Model for Natural Gas Permeation through Polymer Nanocomposites at High Pressure and Temperature

Article Preview

Abstract:

A mathematical model for predicting the permeability of natural gas in polymer nanocomposites was developed and tested using experimental data. The model takes into account the effects of pressure, temperature, crystallinity and nanoparticle loading. Three model parameters (, and) were obtained. The parameter is a measure of the activation energy, described the effect of nanocomposite loading, and can be used to describe the effect of gas concentration on the. Polymer nanocomposites were prepared using high density polyethylene as polymer matrix and Cloisite 15A as nanoclay. The proposed model was used to predict the permeability of the nanocomposites to pure CH4 and mixed CH4/CO2 gases (containing 80 mol% CH4) at pressures up to about 106 bar and temperatures between 30 to 70°C. Predicted results show that the developed model provides an excellent description of natural gas permeation in pure HDPE and its nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-101

Citation:

Online since:

December 2012

Export:

Price:

[1] B. Flaconnèche, J. Martin, M. H. Klopffer, Permeability, Diffusion and Solubility of Gases in Polyethylene, Polyamide 11 and Poly(Vinylidene fluoride), Oil & Gas Sc. Technol, 56 (2001) 261-278.

DOI: 10.2516/ogst:2001023

Google Scholar

[2] J. K. Adewole, L. Jensen, U. A. Al-Mubaiyedh, N. von Solms, I. A. Hussein, Transport Properties of Natural Gas through Polyethylene Nanocomposites, J. Polym. Res., 19 (2012) 1-11.

DOI: 10.1007/s10965-011-9814-0

Google Scholar

[3] Z. Benjelloun-Dabaghi, J. C. de Hemptinne, J. Jarrin, J. M. Leroy, J. C. Aubry, J. N. Saas, C. Taravel-Condat, MOLDI™: A Fluid Permeation Model to Calculate the Annulus Composition in Flexible Pipes, Oil & Gas Sc. Technol. 57 (2002) 177-192.

DOI: 10.2516/ogst:2002014

Google Scholar

[4] G. Choudalakis, A. Gotsis, Permeability of polymer/clay nanocomposites: A review, Eur. Polym. J. 45 (2009) 967-984.

DOI: 10.1016/j.eurpolymj.2009.01.027

Google Scholar

[5] L. A. Belfiore, Physical Properties of Macromolecules, John Wiley & Sons, New Jersey, (2010).

Google Scholar

[6] Y. Cengel, J. A. Ghajar, Heat and Mass Transfer Fundamentals and Appilactions, McGraw Hill, New York, (2011).

Google Scholar

[7] Y. M. Jaffrin, C. Legallais, Biomedical Membrane Extracorporeal Devices, in: E. Drioli, L. Giorno (Eds), Membrane Operations Innovative Separations and Transformations, WILLEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, pp.411-431.

DOI: 10.1002/9783527626779.ch18

Google Scholar

[8] J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, Inc., New York, (1996).

Google Scholar

[9] R. K. Bharadwaj, Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites, Macromol. 34 (2001) 9189-9192.

DOI: 10.1021/ma010780b

Google Scholar

[10] M. V. Deepthi, M. Sharma, R. Sailaja, P. Anantha, P. Sampathkumaran, S. Seetharamu, Mechanical and thermal characteristics of high density polyethylene - fly ash Cenospheres composites, Mat. Des. 31 (2010) 2051-(2060).

DOI: 10.1016/j.matdes.2009.10.014

Google Scholar

[11] R. D. Raharjo, B. D. Freeman, D. R. Paul, G. C. Sarti, E. S. Sanders, Pure and mixed gas CH4 and n-C4H10 Permeability and Diffusivity in Poly(dimethysiloxane), J. Membr. Sc., 306 (2007 ) 75-92.

DOI: 10.1016/j.memsci.2007.08.014

Google Scholar

[12] R. S. Prabhakar, R. Raharjo, L. G. Toy, H. Lin, B. D. Freeman, Self-Consistent Model of Concentration and Temperature Dependence of Permeability in Rubbery Polymers, Ind. Eng. Chem. Res. 44 (2005) 1547-1556.

DOI: 10.1021/ie0492909

Google Scholar

[13] M. Klopffer, B. Flaconnèche, Transport Properties of Gases in Polymers: Bibliographic Review, Oil & Gas Sc. Technol. 56 (2001) 223-244.

DOI: 10.2516/ogst:2001021

Google Scholar

[14] D. W. Krevelen, K. te. Nijenhuis, Properties of Polymers Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contribution, ELSEVIER, Amsterdam, (2009).

Google Scholar

[15] J. K. Adewole, U. A. Al-Mubaiyedh, A. Ul-Hamid, A. A. Al-Juhani, I. A. Hussein, Bulk and surface mechanical properties of clay modified HDPE used in liner applications, Can. J. Chem. Eng. 90 (2011) 1066–1078.

DOI: 10.1002/cjce.20619

Google Scholar

[16] R. L. Blaine, Determination of Polymer Crystallinity by DSC, TA123, TA Instrument Publication (2010) 1-3.

Google Scholar