Molecular Dynamics Study of Nonequilibrium [112] Tilt Grain Boundaries in Ni and their Relaxation under Cyclic Deformation

Article Preview

Abstract:

Atomic structure of nonequilibrium [112] tilt grain boundaries in nickel containing disclination dipoles is studied by means of molecular dynamics simulations. Initial systems for simulations are constructed by joining together pieces of two bicrystals one of which contains a symmetric tilt GB S=11 / 62.96° and the other a GB S=105 / 57.12°, or S=125 / 55.39°, or S=31 / 52.20°, so disclination dipoles with strengths w = 5.84°, 7.58° and 10.76° are created. Stress maps plotted after relaxation at zero temperature indicate the presence of high long-range stresses induced by disclination dipoles. Excess energy of GBs due to the nonequilibrium structure is calculated. Effect of oscillating tension-compression stresses on the nonequilibrium GB structure is studied at temperature T = 300 K. The simulations show that the oscillating stress results in a generation of partial lattice dislocations by the GB, their glide across grains and sink at appropriate surfaces that results in a compensation of the disclination stress fields and recovery of an equilibrium GB structure and energy.

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

January 2018

Export:

Price:

[1] O.A. Kaibyshev, R.Z. Valiev, Grain Boundaries and Properties of Metals, Metallurgia Publ., Moscow, 1987 (In Russian).

Google Scholar

[2] A.A. Nazarov, A.E. Romanov, R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta Metall. Mater. 41 (1993) 1033-1040.

DOI: 10.1016/0956-7151(93)90152-i

Google Scholar

[3] A.A. Nazarov, R.R. Mulyukov, Nanostructured materials, in: W. Goddard, D. Brenner, S. Lyshevski, G. Iafrate (Eds. ), Handbook of Nanoscience, Engineering, and Technology, CRC Press, Boca Raton, 2002, pp.22-41.

Google Scholar

[4] S.R. Phillpot, D. Wolf, H. Gleiter, Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material, J. Appl. Phys. 78 (1995) 847-861.

DOI: 10.1063/1.360275

Google Scholar

[5] A.A. Nazarov, Internal stress effect on the grain boundary diffusion in submicrocrystalline metals, Philos. Mag. Lett. 80 (2000) 221-228.

DOI: 10.1080/095008300176191

Google Scholar

[6] V.V. Rybin, Large Plastic Deformations and Fracture of Metals, Metallurgia Publ., Moscow, 1986 (In Russian).

Google Scholar

[7] V.V. Rybin, A.A. Zisman, N. Yu. Zolotarevsky, Junction disclinations in plastically deformed crystals, Acta Metall. Mater. 41 (1993) 2211-2217.

DOI: 10.1016/0956-7151(93)90390-e

Google Scholar

[8] A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Random disclination ensembles in ultrafine-grained materials produced by severe plastic deformation, Scripta Mater. 34 (1996) 729-734.

DOI: 10.1016/1359-6462(95)00573-0

Google Scholar

[9] A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation, Acta Mater. 50 (2002) 3927-3939.

DOI: 10.1016/s1359-6454(02)00195-7

Google Scholar

[10] G.J. Tucker, D.L. McDowell, Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations, Int. J. Plast. 27 (2011) 841-857.

DOI: 10.1016/j.ijplas.2010.09.011

Google Scholar

[11] K. Zhou, M.S. Wu, A.A. Nazarov, Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire, Phys. Rev. B 73 (2006) 045410-1 - 045410-11.

DOI: 10.1103/physrevb.73.045410

Google Scholar

[12] K. Zhou, A.A. Nazarov, M.S. Wu, Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects, Phys. Rev. Lett. 98 (2007) 035501-1 - 035501-4.

DOI: 10.1103/physrevlett.98.035501

Google Scholar

[13] T.J. Rupert, C.A. Schuh, Mechanically driven grain boundary relaxation: a mechanism for cyclic hardening in nanocrystalline Ni, Philos. Mag. Lett. 92 (2012) 20-28.

DOI: 10.1080/09500839.2011.619507

Google Scholar

[14] A. Nazarova, R. Mulyukov, Yu. Tsarenko, V. Rubanik, A. Nazarov, Effect of ultrasonic treatment on the microstructure and properties of nanostructured nickel processed by high pressure torsion, Mater. Sci. Forum 667-669 (2011) 605-609.

DOI: 10.4028/www.scientific.net/msf.667-669.605

Google Scholar

[15] A.A. Nazarov, A.A. Samigullina, R.R. Mulyukov, Yu.V. Tsarenko, V.V. Rubanik, Changes in the microstructure and mechanical properties of nanomaterials under an ultrasonic wave effect, J. Machin. Manuf. Reliab. 43 (2014) 153-159.

DOI: 10.3103/s1052618814020113

Google Scholar

[16] A.A. Samigullina, A.A. Nazarov, R.R. Mulyukov, Yu.V. Tsarenko, V.V. Rubanik, Effect of ultrasonic treatment on the strength and ductility of bulk nanostructured nickel processed by equal-channel angular pressing, Rev. Adv. Mater. Sci. 39 (2014).

DOI: 10.22226/2410-3535-2012-4-214-217

Google Scholar

[17] T. Shimokawa, Asymmetric ability of grain boundaries to generate dislocations under tensile or compressive loadings, Phys. Rev. B 82 (2010) 174122-1 - 174122-13.

DOI: 10.1103/physrevb.82.174122

Google Scholar

[18] A.A. Nazarov, Molecular dynamics simulation of the relaxation of a grain boundary disclination dipole under ultrasonic stresses, Letters on Materials, 6 (2016) 179-182.

DOI: 10.22226/2410-3535-2016-3-179-182

Google Scholar

[19] S.M. Foiles, M.I. Daw, M.S. Baskes, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys, Phys. Rev. B 33 (1986) 7983-7991.

DOI: 10.1103/physrevb.33.7983

Google Scholar

[20] Information on http: /xmd. sourceforge. net/about. html.

Google Scholar

[21] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[22] J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phys. Chem., 91 (1987) 4950-4963.

DOI: 10.1021/j100303a014

Google Scholar

[23] K.K. Shih, J.C.M. Li, Energy of grain boundaries between cusp misorientations, Surf. Sci. 50 (1975) 109-124.

DOI: 10.1016/0039-6028(75)90176-4

Google Scholar

[24] V. Yu. Gertsman, A.A. Nazarov, A.E. Romanov, R. Z Valiev, V.I. Vladimorov, Disclination-structural unit model of grain boundaries, Philos. Mag. A 59 (1989) 1113-1118.

DOI: 10.1080/01418618908209841

Google Scholar

[25] A.A. Nazarov, Kinetics of grain boundary recovery in deformed polycrystals, Interface Sci. 8 (2000) 315-322.

Google Scholar

[26] A.E. Romanov, V. I. Vladimirov, Disclinations in crystalline solids, in: F.R.N. Nabarro, Ed., Dislocations in Solids, Vol. 9, Elsevier Sci. Publ., Amsterdam, 1992, pp.191-402.

Google Scholar

[27] J. Janguiillaume, F. Chmelik, G. Kapelski, F. Bordeaux, A.A. Nazarov, G. Canova, C. Esling, R.Z. Valiev, B. Baudelet, Microstructures and hardness of ultrafine-grained Ni3Al, Acta Metall. Mater. 41 (1993) 2953-2962.

DOI: 10.1016/0956-7151(93)90110-e

Google Scholar

[28] D.V. Bachurin, R.T. Murzaev, J.A. Baimova, A.A. Samigullina, K.A. Krylova. Ultrasound influence on behavior of disordered dislocation systems in a crystal with non-equilibrium grain boundaries, Letters on materials 6 (2016) 183-188.

DOI: 10.22226/2410-3535-2016-3-183-188

Google Scholar