Artefacts Removal to Detect Visual Evoked Potentials in Brain Computer Interface Systems

Article Preview

Abstract:

The interference of artefacts with evoked scalp electroencephalogram (EEG) responses is a problem in event related brain computer interface (BCI) system that reduces signal quality and interpretability of user's intentions. Many strategies have been proposed to reduce the effects of non-neural artefacts, while the activity of neural sources that do not reflect the considered stimulation has been neglected. However discerning such activities from those to be retained is important, but subtle and difficult as most of their features are the same. We propose an automated method based on a combination of a genetic algorithm (GA) and a support vector machine (SVM) to select only the sources of interest. Temporal, spectral, wavelet, autoregressive and spatial properties of independent components (ICs) of EEG are inspected. The method selects the most distinguishing subset of features among this comprehensive fused set of information and identifies the components to be preserved. EEG data were recorded from 12 healthy subjects in a visual evoked potential (VEP) based BCI paradigm and the corresponding ICs were classified by experts to train and test the algorithm. They were contaminated with different sources of artefacts, including electromyogram (EMG), electrode connection problems, blinks and electrocardiogram (ECG), together with neural contributions not related to VEPs. The accuracy of ICs classification was about 88.5% and the energetic residual error in recovering the clean signals was 3%. These performances indicate that this automated method can effectively identify and remove main artefacts derived from either neural or non-neural sources while preserving VEPs. This could have important potential applications, contributing to speed and remove subjectivity of the cleaning procedure by experts. Moreover, it could be included in a real time BCI as a pre-processing step before the identification of the user’s intention.

You might also be interested in these eBooks

Info:

Pages:

91-103

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] A. Kapur, S. Kapur, P. Maes, AlterEgo: A Personalized Wearable Silent Speech Interface, in: 23rd Int. Conf. Intell. User Interfaces, ACM, 2018: p.43–53.

DOI: 10.1145/3172944.3172977

Google Scholar

[2] A.N. Malik, J. Iqbal, M.I. Tiwana, Temporal based EEG Signals Classification for Talocrural and Knee Joint Movements using Emotive Head Set, J. Biomed. Eng. Med. Imaging. 2 (2016) 69.

DOI: 10.14738/jbemi.26.1730

Google Scholar

[3] D. Marshall, D. Coyle, S. Wilson, M. Callaghan, Games, gameplay, and BCI: the state of the art, IEEE Trans. Comput. Intell. AI Games. 5 (2013) 82–99.

DOI: 10.1109/tciaig.2013.2263555

Google Scholar

[4] M. Semprini, M. Laffranchi, V. Sanguineti, L. Avanzino, R. De Icco, L. De Michieli, M. Chiappalone, technological Approaches for Neurorehabilitation: From robotic Devices to Brain stimulation and Beyond, Front. Neurol. 9 (2018) 212.

DOI: 10.3389/fneur.2018.00212

Google Scholar

[5] D. Nurseitov, A. Serekov, A. Shintemirov, B. Abibullaev, Design and evaluation of a P300-ERP based BCI system for real-time control of a mobile robot, in: Brain-Computer Interface (BCI), 2017 5th Int. Winter Conf., IEEE, 2017: p.115–120.

DOI: 10.1109/iww-bci.2017.7858177

Google Scholar

[6] S. Saulynas, C. Lechner, R. Kuber, Towards the use of brain–computer interface and gestural technologies as a potential alternative to PIN authentication, Int. J. Human–Computer Interact. 34 (2018) 433–444.

DOI: 10.1080/10447318.2017.1357905

Google Scholar

[7] X. Fan, L. Bi, T. Teng, H. Ding, Y. Liu, A brain–computer interface-based vehicle destination selection system using P300 and SSVEP signals, IEEE Trans. Intell. Transp. Syst. 16 (2015) 274–283.

DOI: 10.1109/tits.2014.2330000

Google Scholar

[8] S. Barua, M.U. Ahmed, C. Ahlstrom, S. Begum, P. Funk, Automated EEG Artifact Handling with Application in Driver Monitoring, IEEE J. Biomed. Heal. Informatics. 22 (2017) 1350-1361.

DOI: 10.1109/jbhi.2017.2773999

Google Scholar

[9] E. Maiorana, D. La Rocca, P. Campisi, On the permanence of EEG signals for biometric recognition, IEEE Trans. Inf. Forensics Secur. 11 (2016) 163–175.

DOI: 10.1109/tifs.2015.2481870

Google Scholar

[10] D.J. McFarland, J.R. Wolpaw, EEG-Based Brain-Computer Interfaces, Curr. Opin. Biomed. Eng. 4 (2017) 194-200.

Google Scholar

[11] V. Mihajlović, B. Grundlehner, R. Vullers, J. Penders, Wearable, wireless EEG solutions in daily life applications: what are we missing?, IEEE J. Biomed. Heal. Informatics. 19 (2015) 6–21.

DOI: 10.1109/jbhi.2014.2328317

Google Scholar

[12] B. Somers, T. Francart, A. Bertrand, A generic EEG artifact removal algorithm based on the multi-channel Wiener filter, J. Neural Eng. 15 (2018) 036007.

DOI: 10.1088/1741-2552/aaac92

Google Scholar

[13] X. Chen, A. Liu, Q. Chen, Y. Liu, L. Zou, M.J. McKeown, Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics, Comput. Biol. Med. 88 (2017) 1–10.

DOI: 10.1016/j.compbiomed.2017.06.013

Google Scholar

[14] J. Minguillon, M.A. Lopez-Gordo, F. Pelayo, Trends in EEG-BCI for daily-life: Requirements for artifact removal, Biomed. Signal Process. Control. 31 (2017) 407–418.

DOI: 10.1016/j.bspc.2016.09.005

Google Scholar

[15] Y. Zhu, Z. Wang, C. Dai, D. Pi, Artifact Removal Methods in Motor Imagery of EEG, in: Int. Conf. Intell. Data Eng. Autom. Learn., Springer, 2017: p.287–294.

DOI: 10.1007/978-3-319-68935-7_32

Google Scholar

[16] F. Ghaderi, S.K. Kim, E.A. Kirchner, Effects of eye artifact removal methods on single trial P300 detection, a comparative study, J. Neurosci. Methods. 221 (2014) 41–47.

DOI: 10.1016/j.jneumeth.2013.08.025

Google Scholar

[17] M. Kim, S.-P. Kim, A comparsion of artifact rejection methods for a BCI using event related potentials, in: Brain-Computer Interface (BCI), 2018 6th Int. Conf., IEEE, 2018: p.1–4.

DOI: 10.1109/iww-bci.2018.8311530

Google Scholar

[18] L. Frølich, I. Winkler, K.-R. Müller, W. Samek, Investigating effects of different artefact types on motor imagery BCI, in: Eng. Med. Biol. Soc. (EMBC), 2015 37th Annu. Int. Conf. IEEE, 2015: p.1942–(1945).

DOI: 10.1109/embc.2015.7318764

Google Scholar

[19] C.S. Kim, J. Sun, D. Liu, Q. Wang, S.G. Paek, Removal of ocular artifacts using ICA and adaptive filter for motor imagery-based BCI, IEEE/CAA J. Autom. Sin. (2017) 1-8.

DOI: 10.1109/jas.2017.7510370

Google Scholar

[20] M. Chaumon, D.V.M. Bishop, N.A. Busch, A practical guide to the selection of independent components of the electroencephalogram for artifact correction, J. Neurosci. Methods. 250 (2015) 47–63.

DOI: 10.1016/j.jneumeth.2015.02.025

Google Scholar

[21] J.A. Urigüen, B. Garcia-Zapirain, EEG artifact removal—state-of-the-art and guidelines, J. Neural Eng. 12 (2015) 31001.

DOI: 10.1088/1741-2560/12/3/031001

Google Scholar

[22] Y. Kopsinis, S. McLaughlin, Development of EMD-based denoising methods inspired by wavelet thresholding, IEEE Trans. Signal Process. 57 (2009) 1351–1362.

DOI: 10.1109/tsp.2009.2013885

Google Scholar

[23] V. Krishnaveni, S. Jayaraman, L. Anitha, K. Ramadoss, Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients, J. Neural Eng. 3 (2006) 338.

DOI: 10.1088/1741-2560/3/4/011

Google Scholar

[24] R.J. Croft, R.J. Barry, Removal of ocular artifact from the EEG: a review, Neurophysiol. Clin. Neurophysiol. 30 (2000) 5–19.

Google Scholar

[25] K.T. Sweeney, T.E. Ward, S.F. McLoone, Artifact removal in physiological signals—Practices and possibilities, IEEE Trans. Inf. Technol. Biomed. 16 (2012) 488–500.

DOI: 10.1109/titb.2012.2188536

Google Scholar

[26] H.-A.T. Nguyen, J. Musson, F. Li, W. Wang, G. Zhang, R. Xu, C. Richey, T. Schnell, F.D. McKenzie, J. Li, EOG artifact removal using a wavelet neural network, Neurocomputing. 97 (2012) 374–389.

DOI: 10.1016/j.neucom.2012.04.016

Google Scholar

[27] T.T.H. Pham, R.J. Croft, P.J. Cadusch, R.J. Barry, A test of four EOG correction methods using an improved validation technique, Int. J. Psychophysiol. 79 (2011) 203–210.

DOI: 10.1016/j.ijpsycho.2010.10.008

Google Scholar

[28] A.K. Abdullah, Z.C. Zhu, L. Siyao, S.M. Hussein, Blind source separation techniques based eye blinks rejection in EEG signals, Inf. Technol. J. 13 (2014) 401–413.

DOI: 10.3923/itj.2014.401.413

Google Scholar

[29] Z. Zhang, H. Li, D. Mandic, Blind source separation and artefact cancellation for single channel bioelectrical signal, in: Wearable Implant. Body Sens. Networks (BSN), 2016 IEEE 13th Int. Conf., IEEE, 2016: p.177–182.

DOI: 10.1109/bsn.2016.7516255

Google Scholar

[30] H. Ghandeharion, A. Erfanian, A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis, Med. Eng. Phys. 32 (2010) 720–729.

DOI: 10.1016/j.medengphy.2010.04.010

Google Scholar

[31] S. Hoffmann, M. Falkenstein, The correction of eye blink artefacts in the EEG: a comparison of two prominent methods, PLoS One. 3 (2008) e3004.

DOI: 10.1371/journal.pone.0003004

Google Scholar

[32] M.A. Klados, C. Papadelis, C. Braun, P.D. Bamidis, REG-ICA: a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts, Biomed. Signal Process. Control. 6 (2011) 291–300.

DOI: 10.1016/j.bspc.2011.02.001

Google Scholar

[33] T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M.J. Mckeown, V. Iragui, T.J. Sejnowski, Removing electroencephalographic artifacts by blind source separation, Psychophysiology. 37 (2000) 163–178.

DOI: 10.1111/1469-8986.3720163

Google Scholar

[34] W. Kong, Z. Zhou, S. Hu, J. Zhang, F. Babiloni, G. Dai, Automatic and direct identification of blink components from scalp EEG, Sensors. 13 (2013) 10783–10801.

DOI: 10.3390/s130810783

Google Scholar

[35] A. Mognon, J. Jovicich, L. Bruzzone, M. Buiatti, ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features, Psychophysiology. 48 (2011) 229–240.

DOI: 10.1111/j.1469-8986.2010.01061.x

Google Scholar

[36] H. Nolan, R. Whelan, R.B. Reilly, FASTER: fully automated statistical thresholding for EEG artifact rejection, J. Neurosci. Methods. 192 (2010) 152–162.

DOI: 10.1016/j.jneumeth.2010.07.015

Google Scholar

[37] M.T. Akhtar, W. Mitsuhashi, C.J. James, Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data, Signal Processing. 92 (2012) 401–416.

DOI: 10.1016/j.sigpro.2011.08.005

Google Scholar

[38] R.E. Kelly Jr, G.S. Alexopoulos, Z. Wang, F.M. Gunning, C.F. Murphy, S.S. Morimoto, D. Kanellopoulos, Z. Jia, K.O. Lim, M.J. Hoptman, Visual inspection of independent components: defining a procedure for artifact removal from fMRI data, J. Neurosci. Methods. 189 (2010) 233–245.

DOI: 10.1016/j.jneumeth.2010.03.028

Google Scholar

[39] I. Daly, R. Scherer, M. Billinger, G. Müller-Putz, FORCe: Fully online and automated artifact removal for brain-computer interfacing, IEEE Trans. Neural Syst. Rehabil. Eng. 23 (2015) 725–736.

DOI: 10.1109/tnsre.2014.2346621

Google Scholar

[40] J. Dammers, M. Schiek, F. Boers, C. Silex, M. Zvyagintsev, U. Pietrzyk, K. Mathiak, Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings, IEEE Trans. Biomed. Eng. 55 (2008) 2353–2362.

DOI: 10.1109/tbme.2008.926677

Google Scholar

[41] L. Frølich, T.S. Andersen, M. Mørup, Classification of independent components of EEG into multiple artifact classes, Psychophysiology. 52 (2015) 32–45.

DOI: 10.1111/psyp.12290

Google Scholar

[42] I.I. Goncharova, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, EMG contamination of EEG: spectral and topographical characteristics, Clin. Neurophysiol. 114 (2003) 1580–1593.

DOI: 10.1016/s1388-2457(03)00093-2

Google Scholar

[43] J.-A. Jiang, C.-F. Chao, M.-J. Chiu, R.-G. Lee, C.-L. Tseng, R. Lin, An automatic analysis method for detecting and eliminating ECG artifacts in EEG, Comput. Biol. Med. 37 (2007) 1660–1671.

DOI: 10.1016/j.compbiomed.2007.03.007

Google Scholar

[44] S. Romero, M.A. Mañanas, M.J. Barbanoj, A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case, Comput. Biol. Med. 38 (2008) 348–360.

DOI: 10.1016/j.compbiomed.2007.12.001

Google Scholar

[45] O. Aydemir, S. Pourzare, T. Kayikcioglu, Classifying various EMG and EOG artifacts in EEG signals, Przegląd Elektrotechniczny. 88 (2012) 218–222.

Google Scholar

[46] S.H. Oh, Y.R. Lee and, H.N. Kim, A novel EEG feature extraction method using Hjorth parameter, International Journal of Electronics and Electrical Engineering. 2 (2014) 106-110.

DOI: 10.12720/ijeee.2.2.106-110

Google Scholar

[47] V. Lawhern, W.D. Hairston, K. McDowell, M. Westerfield, K. Robbins, Detection and classification of subject-generated artifacts in EEG signals using autoregressive models, J. Neurosci. Methods. 208 (2012) 181–189.

DOI: 10.1016/j.jneumeth.2012.05.017

Google Scholar

[48] V. Lawhern, W.D. Hairston, K. Robbins, Optimal feature selection for artifact classification in EEG time series, in: Int. Conf. Augment. Cogn., Springer, 2013: p.326–334.

DOI: 10.1007/978-3-642-39454-6_34

Google Scholar

[49] W.-Y. Hsu, Improving classification accuracy of motor imagery EEG using genetic feature selection, Clin. EEG Neurosci. 45 (2014) 163–168.

DOI: 10.1177/1550059413491559

Google Scholar

[50] B. Nakisa, M.N. Rastgoo, D. Tjondronegoro, V. Chandran, Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors, Expert Syst. Appl. 93 (2017) 143-155.

DOI: 10.1016/j.eswa.2017.09.062

Google Scholar

[51] I. Rejer, Genetic algorithms for feature selection for brain computer interface, Int. J. Pattern Recognit. Artif. Intell. 29 (2015) 1559008.

DOI: 10.1142/s0218001415590089

Google Scholar

[52] P. Bhuvaneswari, J.S. Kumar, Support vector machine technique for EEG signals, Int. J. Comput. Appl. 63 (2013) 1-5.

Google Scholar

[53] W.-Y. Hsu, Assembling a multi-feature EEG classifier for left–right motor imagery data using wavelet-based fuzzy approximate entropy for improved accuracy, Int. J. Neural Syst. 25 (2015) 1550037.

DOI: 10.1142/s0129065715500379

Google Scholar

[54] B.-G. Lee, B.-L. Lee, W.-Y. Chung, Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals, Sensors. 14 (2014) 17915–17936.

DOI: 10.3390/s141017915

Google Scholar

[55] W.-Y. Hsu, C.-H. Lin, H.-J. Hsu, P.-H. Chen, I.-R. Chen, Wavelet-based envelope features with automatic EOG artifact removal: Application to single-trial EEG data, Expert Syst. Appl. 39 (2012) 2743–2749.

DOI: 10.1016/j.eswa.2011.08.132

Google Scholar

[56] I. Winkler, S. Haufe, M. Tangermann, Automatic classification of artifactual ICA-components for artifact removal in EEG signals, Behav. Brain Funct. 7 (2011) 30.

DOI: 10.1186/1744-9081-7-30

Google Scholar

[57] T. Radüntz, J. Scouten, O. Hochmuth, B. Meffert, EEG artifact elimination by extraction of ICA-component features using image processing algorithms, J. Neurosci. Methods. 243 (2015) 84–93.

DOI: 10.1016/j.jneumeth.2015.01.030

Google Scholar

[58] Y. Zou, V. Nathan, R. Jafari, Automatic identification of artifact-related independent components for artifact removal in EEG recordings, IEEE J. Biomed. Heal. Informatics. 20 (2016) 73–81.

DOI: 10.1109/jbhi.2014.2370646

Google Scholar