Synthesis of Vegan Leather Using Plant-Based Substrates: A Preliminary Study

Article Preview

Abstract:

Cow leather is a widely used material. Even though durable, it causes ethical, social, and environmental issues. The synthesis of vegan leather, using a symbiotic culture of bacteria and yeast (SCOBY), could be explored for an alternative to cow leather. Presently, there are limited studies on the different substrates used to produce vegan leather using this method. Hence, this study aimed to produce plant-based vegan leather, using various plant-based substrates such as black tea, green tea, black and green tea, coconut water, and fruit pulp with five replicates per substrate. All the substrates used in the experiments were able to produce cellulose upon inoculation. The overall results indicate that the substrate consisting of a mixture of black and green tea was the most effective in producing vegan leather in terms of yield and cost.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-66

Citation:

Online since:

September 2021

Export:

Price:

* - Corresponding Author

[1] E. Wilson, Fashion and Everyday Life: London and New York.

Google Scholar

[2] A. Freedman, Fashion after fashion, Fashion Theory 27 (2018) 1-8.

Google Scholar

[3] R. S. Lokhande, P.U. Singare, D.S. Pimple, Study on physico-chemical parameters of wastewater effluents from Taloja industrial area of Mumbai, India, Int. J. Ecosyst. 1 (2011) 1-9.

DOI: 10.5923/j.ije.20110101.01

Google Scholar

[4] M. M. Nasr, M. A. Gondal, Z. S. Seddigi, Detection of hazardous pollutants in chrome-tanned leather using locally developed laser-induced breakdown spectrometer, Environ. Monit. Assess. 175 (2011) 387-95.

DOI: 10.1007/s10661-010-1538-9

Google Scholar

[5] A. Tarantola, How leather is slowly killing the people and places that make it; (2014).

Google Scholar

[6] Z. Mikoczy, L. Hagmar, Cancer incidence in the Swedish leather tanning industry: updated findings 1958–99, Occup. Environ. Med. 62 (2005) 461-4.

DOI: 10.1136/oem.2004.017038

Google Scholar

[7] One Green Planet, Why leather is disgusting and cruel, (2014).

Google Scholar

[8] S. Yagoub, Biodegradation of leather solid waste (Doctoral dissertation, The University of Northampton).

Google Scholar

[9] S.K. Rastogi, C. Kesavachandran, F. Mahdi, A. Pandey, Occupational cancers in leather tanning industries: A short review, Indian J. Occup. Environ. Med. 11 (2007) 3.

DOI: 10.4103/0019-5278.32456

Google Scholar

[10] L. Skov, The role of trade fairs in the global fashion business, Curr. Sociol. 54 (2006) 764-83.

Google Scholar

[11] A. Payne, D. Brough, P. Musk, Will we soon be growing our own vegan leather at home? The Conversation, (2016).

Google Scholar

[12] C. Chen, B.Y. Liu. Changes in major components of tea fungus metabolites during prolonged fermentation, J. Appl. Microbiol. 89 (2000) 834-9.

DOI: 10.1046/j.1365-2672.2000.01188.x

Google Scholar

[13] J. Martínez Leal, L. Valenzuela Suárez, R. Jayabalan, J. Huerta Oros, A. Escalante-Aburto, A review on health benefits of kombucha nutritional compounds and metabolites, CYTA-J Food, 16 (2018) 390-9.

DOI: 10.1080/19476337.2017.1410499

Google Scholar

[14] R. Jayabalan, R.V. Malbaša, E.S. Lončar, J.S. Vitas, M. Sathishkumar, A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus, Compr. Rev. Food Sci. Food Saf. 13 (2014) 538-50.

DOI: 10.1111/1541-4337.12073

Google Scholar

[15] A. Chusna, I. Akra, D. N. Enden, S. Ganiyasa, P. Pranandika Jaya, L.S. Gita, T. Intan, Sweet potato (Ipomoea Batatas L.) based microbial cellulose as advanced biomaterial for sustainable leather production, Suranaree J. Sci. Technol. 26 (2019) 78-83.

Google Scholar

[16] W.N. Goh, A. Rosma, B. Kaur, A. Fazilah, A.A. Karim, R. Bhat, Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose, Int. Food Res. J. 19 (2012) 109-117.

Google Scholar

[17] C. Nam, Y.A. Lee, RETHINK II: Kombucha Shoes for Scarlett and Rhett. In International Textile and Apparel Association Annual Conference Proceedings (Vol. 73, No. 1). Iowa State University Digital Press, (2016).

DOI: 10.31274/itaa_proceedings-180814-1647

Google Scholar

[18] V. Kumar, V.K. Joshi, Kombucha: Technology, microbiology, production, composition and therapeutic value, Int. J. Food Ferment. Tec. 6 (2016) 13-24.

Google Scholar

[19] I. A. Hassan, E. J. AL-Kalifawi, Factors Influence on the yield of bacterial cellulose of Kombucha (Khubdat humza), Baghdad Sci. J. 11 (2014) 1420-28.

DOI: 10.21123/bsj.11.3.1420-1428

Google Scholar

[20] F. Yoshinaga, N. Tonouchi, K. Watanabe, Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material, Biosci. Biotechnol. Biochem. 61 (1997) 219-24.

DOI: 10.1271/bbb.61.219

Google Scholar

[21] T. A. Mukadam, K. Punjabi, S.D. Deshpande, S.P. Vaidya, A.S. Chowdhary. Isolation and characterization of bacteria and yeast from Kombucha tea, Int. J. Curr. Microbiol. Appl. Sci. 5 (2016) 32-41.

DOI: 10.20546/ijcmas.2016.506.004

Google Scholar

[22] A. Budhiono, B. Rosidi, H. Taher, M. Iguchi, Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system, Carbohydr. Polym. 40 (1999) 137-43.

DOI: 10.1016/s0144-8617(99)00050-8

Google Scholar

[23] A. Jagannath, S.S. Manjunatha, N. Ravi, P. S. Raju, The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum, J. Food Process Eng. 34 (2011) 593-608.

DOI: 10.1111/j.1745-4530.2009.00403.x

Google Scholar

[24] A. Kurosumi, C. Sasaki, Y. Yamashita, Y. Nakamura, Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693, Carbohydr. Polym. 76 (2009) 333-5.

DOI: 10.1016/j.carbpol.2008.11.009

Google Scholar

[25] M. Velásquez-Riaño, V. Bojacá, Production of bacterial cellulose from alternative low-cost substrates, Cellulose 24 (2017) 2677-98.

DOI: 10.1007/s10570-017-1309-7

Google Scholar

[26] C. Nam, Y.A. Lee. Multilayered cellulosic material as a leather alternative in the footwear industry, Cloth Text Res. J. 37 (2019) 20-34.

DOI: 10.1177/0887302x18784214

Google Scholar

[27] V. Revin, E. Liyaskina, M. Nazarkina, A. Bogatyreva, M. Shchankin. Cost-effective production of bacterial cellulose using acidic food industry by-products, Braz. J. Microbiol. 49 (2018) 151-9.

DOI: 10.1016/j.bjm.2017.12.012

Google Scholar

[28] K. Watanabe, S. Yamanaka, Effects of oxygen tension in the gaseous phase on production and physical properties of bacterial cellulose formed under static culture conditions, Biosci. Biotechnol. Biochem. 59 (1995) 65-8.

DOI: 10.1271/bbb.59.65

Google Scholar

[29] L.H. Herbst, The role of nitrogen from fruit pulp in the nutrition of the frugivorous bat Carollia perspicillata, Biotropica (1986) 39-44.

DOI: 10.2307/2388360

Google Scholar

[30] K.A. Zahan, K. Nordin, M. Mustapha, M.N. Mohd Zairi, Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production, Appl. Mech. Mater. 815 (2015) 3-8.

DOI: 10.4028/www.scientific.net/amm.815.3

Google Scholar

[31] V.T. Nguyen, B. Flanagan, M.J. Gidley, G.A. Dykes, Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha, Curr. Microbiol. 57 (2008) 449.

DOI: 10.1007/s00284-008-9228-3

Google Scholar

[32] Leather Dictionary. Thickness of leather; (2020).

Google Scholar

[33] A. S. Amarasekara, D. Wang, T. L. Grady, A comparison of kombucha SCOBY bacterial cellulose purification methods, SN Appl. Sci. 2 (2020) 240.

DOI: 10.1007/s42452-020-1982-2

Google Scholar

[34] Y. A. Tapias, M.A. Peltzer, J.F. Delgado, A.G. Salvay, Kombucha tea by-product as source of novel materials: Food Bioproc. Tech. 13 (2020) 1166-80.

DOI: 10.1007/s11947-020-02471-4

Google Scholar