Synthesis of Silver (I) Coordination of Aspirinate Azo Ligands as Potential Antibacterial Agents

Article Preview

Abstract:

The rise of antimicrobial resistance for infectious bacteria has become an alarming issue to human health. New antimicrobial drugs are in dire need and pivotal to overcome this issue. In this study, aspirinate azo ligands bearing different halogens L1-5 has been prepared via diazo-coupling reaction. The ligands L1-5 were coordinated with silver, Ag (I) metal to produce Ag (I) aspirin-azo complexes C1-5. The antibacterial properties of L1-5 and C1-5 were evaluated against Staphylococcus aureus and Escherichia coli using turbidimetric kinetic method. The complexes C1-5 showed comparable growth inhibition activity towards E. coli (MIC 82-105 ppm) and S. aureus (MIC 80-105 ppm) compared to ligands L1-5 with E. coli (MIC 83-200 ppm), S. aureus (80-131 ppm) and ampicillin (MIC 93 and 124 ppm, respectively). The excellent bacterial resistance of both L1-5 and C1-5 indicates the potential of aspirinate azo and their complexes as new antibacterial agents, which significantly benefit to the pharmaceutical industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

September 2021

Export:

Price:

* - Corresponding Author

[1] M. J. Renwick, D. M. Brogan, E. Mossialos, A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics, J. Antibiot. 69(2016):73-88.

DOI: 10.1038/ja.2015.98

Google Scholar

[2] K. Bush, Why it is important to continue antibacterial drug discovery, ASM News-American Society for Microbiology. 70 (2014) 282-287.

Google Scholar

[3] Z. Ngaini, N. A. Mortadza, Synthesis of halogenated azo-aspirin analogues from natural product derivatives as the potential antibacterial agents, Nat. Prod. Res, 33 (24) (2019) 3507-3514.

DOI: 10.1080/14786419.2018.1486310

Google Scholar

[4] Y. H. Khalaf, Synthesis a number of azo compounds derived from guanine and studying their biological activity on pathogenic bacteria, JUAPS. 2 (2018) 38-45.

DOI: 10.37652/juaps.2008.15646

Google Scholar

[5] Z. Zhong, R. Xing, S. Liu, L. Wang, S. Cai, P. Li, Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro, Carbohydr. Res. 343 (2008) 566-570.

DOI: 10.1016/j.carres.2007.11.024

Google Scholar

[6] C. Z. Sie, Z. Ngaini, Incorporation of kojic acid-azo dyes on TiO2 thin films for dye sensitized solar cells applications, Sol Energy (2017) 1-10.

DOI: 10.1155/2017/2760301

Google Scholar

[7] C. Z. Sie, Z, Ngaini, N. Suhaili, E. Madiahlagan Synthesis of kojic ester derivatives as potential antibacterial agent, J. Chem. (2018) 1-7.

DOI: 10.1155/2018/1245712

Google Scholar

[8] E. Madiahlagan, B. N Sunil, Z. Ngaini, G. Hegde, Synthesis, liquid crystalline properties and photo switching properties of coumarin-azo bearing aliphatic chains: Application in optical storage devices, J. Mol. Liq. 292 (2019) 111328.

DOI: 10.1016/j.molliq.2019.111328

Google Scholar

[9] Z. Ngaini, H. B. Kui, Synthesis and Antibacterial Activity of Azo and Aspirin-Azo Derivatives. Malaysian, J. Anal. Sci. 21 (5) (2017) 1183-1194.

Google Scholar

[10] N. A. Nordin, T. W. Chai, B. L. Tan, C. L. Choi, A. N. Abd Halim, H. Hussain, Z. Ngaini, Novel synthetic monothiourea aspirin derivatives bearing alkylated amines as potential antimicrobial agents, J. Chem (2017) 1-7.

DOI: 10.1155/2017/2378186

Google Scholar

[11] N. A. Nordin, V.Lawai, Z. Ngaini, A. N. A. Halim, S. S. Hwang, R. E. Linton, B. K. Lee, P. M. Neilsen, In vitro cytotoxicity evaluation of thiourea derivatives bearing Salix sp. Conctituent against HK-1 cell lines. Nat. Prod. Res 34 (11) (2020) 1-11.

DOI: 10.1080/14786419.2018.1517120

Google Scholar

[12] B. K. Ho, Z. Ngaini, P. Matthew Neilsen, S. S. Hwang, R. Entigu Linton, E. L. Kong, B. K. Lee, Synthesis and anticancer activities of 4-[(halophenyl) diazenyl] phenol and 4-[(halophenyl) diazenyl] phenyl aspirinate derivatives against nasopharyngeal cancer cell lines, J. Chem (2017) 1-7.

DOI: 10.1155/2017/6760413

Google Scholar

[13] S. N. Chaulia, Metal complexes of multidentate azo dye ligand derived from 4-aminoantipyrine and 2, 4-dihydroxybenzoic acid; Synthesis, characterization and biological activity, Der Pharma Chemica. 8 (2016) 254-272.

Google Scholar

[14] M. A. Kareem, H. D. Salman, Synthesis, Characterization and Antimicrobial Studies of TransitionMetal Complexes with Azo Ligand derivative from 4- Aminoantipyrine. Mesop Environ J (2017) 83-91.

Google Scholar

[15] H.J. Klasen, Historical review of the use of silver in the treatment of burns. I. Early uses, Burns, 26 (2000) 117-130.

DOI: 10.1016/s0305-4179(99)00108-4

Google Scholar

[16] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J. T. Ramírez, M. J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology. 16 (2005) 2346.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[17] P. L. Drake, K. J. Hazelwood, Exposure-related health effects of silver and silver compounds: a review, Ann. Occup. Hyg. 49 (2005) 575-585.

Google Scholar

[18] C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, M. Köller, The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range, RSC Adv. 2 (2012) 6981-6987.

DOI: 10.1039/c2ra20684f

Google Scholar

[19] A. Cochis, J. Barberi, S. Ferraris, M. Miola, L. Rimondini, E. Vernè, S. Spriano, Competitive surface colonization of antibacterial and bioactive materials doped with strontium and/or silver ions, Nanomaterials. 10 (2020) 120.

DOI: 10.3390/nano10010120

Google Scholar

[20] S. Eckhardt, P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K. M. Fromm, Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine, Chem. Rev. 113 (2013) 4708-4754.

DOI: 10.1021/cr300288v

Google Scholar

[21] A. Abbas., & R. S. Kadhim, Preparation, spectral and biological studies of azo ligand derived from proline with Cu (II), Ag (I) and Au (III) metal ion, J. Appl. Chem. 9 (2016) 20-31.

DOI: 10.9790/5736-0908022031

Google Scholar

[22] N. J. Bello-Vieda, H. F. Pastrana, M. F. Garavito, A. G. Ávila, A. M. Celis, A. Muñoz-Castro, J. J. Hurtado, Antibacterial activities of azole complexes combined with silver nanoparticles, Molecules. 23 (2018) 361.

DOI: 10.3390/molecules23020361

Google Scholar

[23] A. Růžička, A. Lyčka, R. Jambor, P. Novák, I. Čísařová, M. Holčapek, M. Erben, J. Holeček Structure of azo dye organotin (IV) compounds containing a C, N‐chelating ligand. Appl. Organomet. 17 (2003) 168-174.

DOI: 10.1002/aoc.401

Google Scholar

[24] U. Kalinowska-Lis, A. Felczak, L. Chęcińska, K. Lisowska, J. Ochocki, Synthesis, characterization and antimicrobial activity of silver (I) complexes of hydroxymethyl derivatives of pyridine and benzimidazole, J. Organomet. Chem. (2014) 394-399.

DOI: 10.1016/j.jorganchem.2013.10.035

Google Scholar

[25] N. O. Al-Zamil, K. A. Al-Sadhan, A. A. Isab, M. I. Wazeer, A. R. A. Al-Arfaj, Silver (I) complexes of imidazolidine-2-thione and triphenylphosphines: Solid-state, solution NMR and antimicrobial activity studies, Spectrosc. 21 (2007) 61-67.

DOI: 10.1155/2007/473914

Google Scholar

[26] A. N. Abd Halim, Z. Ngaini, Synthesis and bacteriostatic activities of bis (thiourea) derivatives with variable chain length, J. Chem. (2016).

DOI: 10.1155/2016/2739832

Google Scholar

[27] S. Brown, J. P. Santa Maria Jr, S. Walker, Wall teichoic acids of gram-positive bacteria, Annu. Rev. Microbiol. 67 (2013) 313-336.

DOI: 10.1146/annurev-micro-092412-155620

Google Scholar

[28] K. R. Raghavendra, K. A. Kumar. Synthesis of some novel azo dyes and their dyeing, redox and antifungal properties, Int. J. Chem.Tech. Res. 5 (2013) 1756-1760.

Google Scholar

[29] C. Bissantz, B. Kuhn, M. Stahl, A medicinal chemist's guide to molecular interactions, J. Med. Chem. 53 (2010) 5061-5084.

DOI: 10.1021/jm100112j

Google Scholar

[30] M. Harrold, R. Zavod, Basic concepts in medicinal chemistry, ASHP, (2013).

Google Scholar

[31] P. P. Ikokoh, H.O. Onigbanjo, O. Adedirin, J. O. Akolade, U. Amuzie, A. Fagbohun, Synthesis and Antimicrobial Activities of Copper (I) Thiourea and Silver (I) Thiourea, Open J. Res. 2 (2015) 86-91.

Google Scholar

[32] P. Gull, A. A. Hashmi, Biological activity studies on metal complexes of macrocyclic schiff base ligand: synthesis and spectroscopic characterization, J. Braz, 26 (2015) 1331-1337.

DOI: 10.5935/0103-5053.20150099

Google Scholar

[33] T. Aiyelabola, E. Akinkunmi, E. Obuotor, I. Olawuni, D. Isabirye, J. Jordaan, Synthesis characterization and biological activities of coordination compounds of 4-hydroxy-3-nitro-2H-chromen-2-one and its aminoethanoic acid and pyrrolidine-2-carboxylic acid mixed ligand complexes, Bioinorg. Chem. Appl. (2017).

DOI: 10.1155/2017/6426747

Google Scholar

[34] K. D. Freeman-Cook, R. L. Hoffman, T. W. Johnson, Lipophilic efficiency: the most important efficiency metric in medicinal chemistry, Future. Med. Chem. 5 (2013) 113-115.

DOI: 10.4155/fmc.12.208

Google Scholar