The Cold Rolling Effect on the Precipitation Sequence and Microstructural Changes of an Al-Mg-Si Alloy

Article Preview

Abstract:

The rolling operation consists of deforming the material by passing it between two rolls whose spacing is smaller than the initial thickness of the sample, the reduction in thickness is obtained discontinuously by successive passes in the rolling mill whose spacing between the cylinders gradually decreases. This operation can influence on the mechanical and microstructural properties of the deformed materials The effect of cold rolled on microstructural evolution and precipitation sequence in Al-Mg-Si alloy has been investigated by using optical microscopy and Differential Scanning Calorimetry (DSC) in this study. The results revealed that the distribution of the grains are elongated along the rolling direction. We also noted that insoluble coarse particles that originated during the manufacturing process of the alloy have become visible after the rolling processes. The dislocations generated by the plastic deformation during cooled rolling constitute preferential sites for the germination and the growth of the phases, which accelerates the kinetics of the precipitation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

September 2019

Export:

Price:

* - Corresponding Author

[1] J. Hirsch, Recent development in aluminium for automotive applications, Transaction of Nonferrous Metals Society of China, 24(7) (2014) 1995-2002. ‏[2] J. Hirsch and T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Materialia, 61 (2013) 818-843. ‏[3] C–H. Ng, S. N. M. Yahaya and A. A. A. Majid, Reviews on aluminum alloy series and its applications, Academia Journal of Scientific Research, 5 (12) (2017) 708-716.‏ ‏[4] Y. Totik, R. Sadeler, I. Kaymaz, M. Gavgali, The effect of homogenisation treatment on cold deformations of AA 2014 and AA 6063 alloys, Journal of Materials Processing Technology, 147(1) (2004) 60-64.

DOI: 10.1016/j.actamat.2012.10.044

Google Scholar

[5] M. Zidani, M. D. Hadid, T. Djimaoui, S. Messaoudi, L. Bessais, D. Miroud, H. Farh, M. H. Mathon, T. Baudin, The Influence of Aging on Industrially Cold Drawn Aluminum Alloy (6101) Used in the Electric Transmission Lines, International Journal of Engineering Research in Africa, 24 (2016) 9-16.

DOI: 10.4028/www.scientific.net/jera.24.9

Google Scholar

[6] F. Serradj, R. Guemini, H. Farh, and K. Djemmal, Study of mechanical and electrical properties of AIMgSi alloys, Ann Chim-Sci Mat, 35 (1) (2010) 59-69.

DOI: 10.3166/acsm.35.59-69

Google Scholar

[7] ‏ M. Zidani, L. Bessais, H. Farh, M. D. Hadid, S. Messaoudi, D. Miroud, M. K. Loudjani, A. L. Helbert, and T. Baudin, Study of texture, mechanical and électrice properties of cold drawn AGS alloy wire, Steel Compos Struct, 22 (4) (2016) 745-752.

DOI: 10.12989/scs.2016.22.4.745

Google Scholar

[8] ‏ H. Belghit, H. Farh, T. Ziar, M. Zidani, M. Guemini, study of mechanical properties and precipitation reactions in low copper containing Al-Mg-Si alloy Arch. Metall. Mater, 63 (4) (2018) 1643-1648.

Google Scholar

[9] ‏ Y. Aouabdia, A. Boubertakh, and S. Hamamda, Precipitation kinetics of the hardening phase in two 6061 aluminium alloys, Mater Lett, 64 (3) (2010) 353-356.

DOI: 10.1016/j.matlet.2009.11.014

Google Scholar

[10] ‏ Y. Birol, DSC Analysis of the precipitation reactions in the alloy AA6082, Therm Anal Calorim, 83(1) (2006) 219-222.

DOI: 10.1007/s10973-005-6950-y

Google Scholar

[11] ‏ W. F. Miao and D. E. Laughlin, Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022, Metall Mater Trans A. 31(2) (2000) 361-371.

DOI: 10.1007/s11661-000-0272-2

Google Scholar

[12] ‏ M. Murayama, K. Hono, W. F. Miao, and D. E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metall Mater Trans A. 32(2) (2001) 239-246.

DOI: 10.1007/s11661-001-0254-z

Google Scholar

[13] ‏ H. Hatta, S. Matsuda, H. Tanaka, H. Yoshida, Effects of natural aging conditions on the bake hardenability of Al-Mg-Si alloys, In Proceedings of the 9th International Conference on Al Alloys, Brisbane, Australia, ( 2004) 564–569.

DOI: 10.2464/jilm.59.439

Google Scholar

[14] ‏ T. Ziar, H. Farh, and R.Guemini, The microstructure development during isothermal heat treatment study of an Al-Mg-Si aluminium alloy, Acta Metall Slovaca, 22 (3) (2016) 138-144.

DOI: 10.12776/ams.v22i3.697

Google Scholar

[15] S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Træholt, U. Tundal, and O. Reiso, The crystal structure of the β" phase in Al–Mg–Si alloys, Acta Mater, 46 (9) (1998) 3283-3298.

DOI: 10.1016/s1359-6454(97)00493-x

Google Scholar

[16] K. Matsuda, T. Naoi, K. Fujii, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno, Crystal structure of the β'' phase in an Al–l.0mass%Mg2Si–0.4mass%Si alloy, Mat Sci Eng A-Struct. 262 (1-2) (1999) 232-237.

DOI: 10.1016/s0921-5093(98)00962-9

Google Scholar

[17] S. J. Andersen, C. D. Marioara, M. Torseater, R. Bjorge, F. J. H. Ehlers, R. Holmestad, and J. Royset: In Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan (2010), p.413.

Google Scholar

[18] M. H. Jacobs, The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy, Philos Mag, 26 (1) (1972) 1-13.

DOI: 10.1080/14786437208221015

Google Scholar

[19] J. P. Lynch, L. M. Brown, M. H. Jacobs, Microanalysis of age-hardening precipitates in aluminium alloys, Acta Metall, 30(7) (1982) 1389-1395.

DOI: 10.1016/0001-6160(82)90159-6

Google Scholar

[20] A. Gaber, M. A. Gaffar, M. S. Mostafa, and E. F. A. Zeid, Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys, J. of Alloy Compd, 429 (1–2) (2007)167-175.

DOI: 10.1016/j.jallcom.2006.04.021

Google Scholar

[21] Rolling Aluminium from the Mine Throuhg the Mill. The Aluminum Association (2007). www.aluminum.org.

Google Scholar

[22] S. K. Panigrahi, R. Jayaganthan, Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy, J Alloy Compd, 509(40) (2011) 9609-9616.

DOI: 10.1016/j.jallcom.2011.07.028

Google Scholar

[23] V. Kumar, I.V. Singh, B. K Mishra, Improved Fracture Toughness of Cryorolled and Room Temperature Rolled 6082 Al Alloys, Acta Metall Sin, 27 ( 2014) (2) 359-367.

DOI: 10.1007/s40195-014-0057-z

Google Scholar

[24] E. Cerri, P. Leo, Influence of severe plastic deformation on aging of Al–Mg–Si alloys, Materials Science and Engineering A, 410–411 (2005) 226–229.

DOI: 10.1016/j.msea.2005.08.135

Google Scholar

[25] H. L. Yu, A. K. Tieu, C. Lu, X.H. Liu, , C. Kongd Mechanical properties of Al–Mg–Si alloy sheets produced using asymmetric cryorolling and ageing treatment, Mater Sci Eng A, 568 (2013) 212-218.

DOI: 10.1016/j.msea.2013.01.048

Google Scholar

[26] S. K. Panigrahi, R. Jayaganthan, V. Chawla, Effect of cryorolling on microstructure of Al–Mg–Si alloy, Mater Lett, 62 (2008) 2626-2629.

DOI: 10.1016/j.matlet.2008.01.003

Google Scholar

[27] B. Mirzakhani, Y. Payandeh, Combination of sever plastic deformation and precipitation hardening processes affecting the mechanical properties in Al–Mg–Si alloy, Mater Des, 68 (2015) 127-133.

DOI: 10.1016/j.matdes.2014.12.011

Google Scholar

[28] B. WANG, X. H CHEN, F.S. PAN, j.J. MAO,Y. FANG, Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy, Trans. Nonferrous Met. Soc. China, 25 (2015) 2481-2489.

DOI: 10.1016/s1003-6326(15)63866-3

Google Scholar

[29] H. Farh, H. Belghit, T. Ziar, A. Noua, F.Serradj, The Cold Rolling Effects on the Microstructure and Micro-Hardness of Al-Mg-Si Alloy, Diffusion Foundations, 18 ( 2018)14-18.

DOI: 10.4028/www.scientific.net/df.18.14

Google Scholar

[30] K. Ikeda, T. Takashita, R. Akiyoshi, S. Hata, H. Nakashima., K. Yamada, K. Kaneko, Effects of scandium and zirconium addition on recrystallization behavior of AlMgSi alloy, Materials Transactions, 59 (4) (2018) 590-597.

DOI: 10.2320/matertrans.l-m2018802

Google Scholar

[31] A. Hayoune, A Dilatometric Study of the Non Isothermal Aging of a Cold Rolled Al-Mg-Si Alloy Defect and Diffusion Forum, 367 (2016)103-109.

DOI: 10.4028/www.scientific.net/ddf.367.103

Google Scholar

[32] K. Fukui, M. Takeda, and T. Endo, Morphology and thermal stability of metastable precipitates formed in an Al–Mg–Si ternary alloy aged at 403 K to 483 K, Matter Lett, 59 (11) (2005)1444-1448.

DOI: 10.1016/j.matlet.2004.12.049

Google Scholar

[33] NEMOUR Hanène, doctorat thesis, Badji Mokhtar- annaba University, Algeria. (2016).

Google Scholar