Minimization of Entropy Generation in MHD Mixed Convection Flow with Energy Dissipation and Joule Heating: Utilization of Sparrow-Quack-Boerner Local Non-Similarity Method

Article Preview

Abstract:

This article aims to present the non-similar solution of MHD mixed convection flow using the Sparrow-Quack-Boerner local non-similarity method. Entropy analysis is also performed in the presence of energy dissipation and Joule heating. The buoyancy parameter is chosen as the non-similarity variable and the equations are derived up to the second level of truncation. The dependency of dimensionless velocity profile, temperature distribution, Bejan and entropy generation number on physical parameters has been discussed. As far as the knowledge of the authors is concerned, no attempt has been made on the entropy analysis of MHD mixed convection flow by the local non-similarity method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-77

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] K. Vajravelu, A. Hadjinicolaou, Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation, International Communications in Heat and Mass Transfer, 20 (1993) 417-430.

DOI: 10.1016/0735-1933(93)90026-r

Google Scholar

[2] A. J. Chamkha, Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption, International Journal of Heat and Fluid Flow, 20 (1999) 84-92.

DOI: 10.1016/s0142-727x(98)10032-2

Google Scholar

[3] F. Aman, A. Ishak, I. Pop, Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects, International Communications in Heat and Mass Transfer 47 (2013) 68–72.

DOI: 10.1016/j.icheatmasstransfer.2013.06.005

Google Scholar

[4] K. L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, International Journal of Heat and Mass Transfer 112 (2017) 983–990.

DOI: 10.1016/j.ijheatmasstransfer.2017.05.042

Google Scholar

[5] K. Vajravelu, R. Li, M. Dewasurendra and K. V. Prasad, Mixed convective boundary layer MHD flow along a vertical elastic sheet, International Journal of Applied and Computational Mathematics, 3 (2017) 2501–2518.

DOI: 10.1007/s40819-016-0252-x

Google Scholar

[6] M. Turkyilmazoglu, Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet, International Journal of Mechanical Sciences, 53 (2011) 886–896.

DOI: 10.1016/j.ijmecsci.2011.07.012

Google Scholar

[7] A. J. Chamkha, K. Khanafer, Non-similar combined convection flow over a vertical surface embedded in a variable porosity medium, Journal of Porous Media, 2 (1999) 231-249.

DOI: 10.1615/jpormedia.v2.i3.20

Google Scholar

[8] M. Z. Salleh, R. Nazar, I. Pop, Mixed convection boundary layer flow over a horizontal circular cylinder with Newtonian heating, Heat and Mass Transfer, 46 (2010) 1411–1418.

DOI: 10.1007/s00231-010-0662-y

Google Scholar

[9] G. Revathi, P. Saikrishnan, A. J. Chamkha, Non-similar solutions for unsteady flow over a yawed cylinder with non-uniform mass transfer through a slot, Ain Shams Engineering Journal 5 (2014) 1199–1206.

DOI: 10.1016/j.asej.2014.04.009

Google Scholar

[10] W. A. Khan, M. Jashim Uddin, A. I. M. Ismail, Non-similar solution of free convective flow of power law nanofluids in porous medium along a vertical cone and plate with thermal and mass convective boundary conditions, Canadian Journal of Physics, 93 (2015).

DOI: 10.1139/cjp-2014-0471

Google Scholar

[11] D. Srinivasacharya, A. J. Chamkha, O. Surender, A. M. Rashad, Natural convection on a porous vertical plate in a doubly stratified non-Darcy porous medium, Frontiers in Heat and Mass Transfer, 19 (2015) 1-7.

DOI: 10.5098/hmt.6.19

Google Scholar

[12] A. M. Rashad, A. J. Chamkha, S. M. M. EL-Kabeir, Natural convection flow of a nanofluid along a vertical plate with stream wise temperature variations, Heat Transfer Asian Research, 45 (2016) 499-514.

DOI: 10.1002/htj.21173

Google Scholar

[13] D. O. Olagunju, A self-similar solution for forced convection boundary layer flow of a FENE-P fluid, Applied Mathematics Letters, 19 (2006) 432–436.

DOI: 10.1016/j.aml.2005.05.015

Google Scholar

[14] A. Ishak, R. Nazar, I. Pop, Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet, Heat Mass Transfer, 44 (2008) 921–927.

DOI: 10.1007/s00231-007-0322-z

Google Scholar

[15] A. Ishak, N. A. Yacob, R. Nazar, I. Pop, Similarity solutions for the mixed convection flow over a vertical plate with thermal radiation, International Journal of Minerals, Metallurgy and Materials, 17 (2010) 149-153.

DOI: 10.1007/s12613-010-0205-z

Google Scholar

[16] M. Sheikholeslami, A. J. Chamkha, Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection, Journal of Molecular Liquids 225 (2017) 750–757.

DOI: 10.1016/j.molliq.2016.11.001

Google Scholar

[17] O. D. Makinde, On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition, Canadian Journal of Chemical Engineering, 88 (2010) 983–990.

DOI: 10.1002/cjce.20369

Google Scholar

[18] E. M. Sparrow, H. Quack, C. J. Boerner, Local non-similarity boundary layer solutions, AIAA Journal, 8 (1970) 18936-(1942).

DOI: 10.2514/3.6029

Google Scholar

[19] W. J. Minkowycz, E. M. Sparrow, Local non-similarity solutions for natural convection on a vertical cylinder, Journal of Heat Transfer, 96 (1974) 178-183.

DOI: 10.1115/1.3450161

Google Scholar

[20] W.J. Minkowycz, E. M. Sparrow, Numerical solution scheme for local non-similarity boundary layer analysis, Numerical Heat Transfer, 1 (1978) 69-85.

DOI: 10.1080/10407787808913364

Google Scholar

[21] W.J. Minkowycz, P. Chen, Local non-similarity solutions for free convective flow with uniform lateral mass flux in a porous medium, Letters in Heat and Mass Transfer, 9 (1982) 159-168.

DOI: 10.1016/0094-4548(82)90054-6

Google Scholar

[22] E. M. Mureithi, D. P. Mason, Local non-similarity solutions for a forced free boundary layer flow with viscous dissipation, Mathematical and Computational Applications, 15 (2010) 558-573.

DOI: 10.3390/mca15040558

Google Scholar

[23] I. Muhaimin, R. Kandasamy, Local non-similarity solution for the impact of a chemical reaction in an MHD mixed convection heat and mass transfer flow over a wedge in the presence of suction/injection, Journal of Applied Mechanics and Technical Physics, 51 (2010).

DOI: 10.1007/s10808-010-0092-0

Google Scholar

[24] R. Mohamad, R. Kandasamy and M. Ismoen, Local non-similarity solution for MHD mixed convection flow of a nanofluid past a permeable vertical plate in the presence of thermal radiation effects, Applied and Computational Mathematics, 4 (2015) 1-9.

DOI: 10.4172/2168-9679.1000261

Google Scholar

[25] R. Kandasamy, I. Muhaimin, A.K. Rosmila, The performance evaluation of unsteady MHD non-Darcy nanofluid flow over a porous wedge due to renewable (solar) energy, Renewable Energy 64 (2014) 1-9.

DOI: 10.1016/j.renene.2013.10.019

Google Scholar

[26] A. Bejan, A study of entropy generation in fundamental convective heat transfer, ASME, Journal of Heat transfer, 101 (1979) 718-725.

DOI: 10.1115/1.3451063

Google Scholar

[27] A. Bejan, The thermodynamic design of heat and mass transfer processes and devices, Heat and Fluid Flow, 8 (1987) 258- 276.

DOI: 10.1016/0142-727x(87)90062-2

Google Scholar

[28] O. D. Makinde, E. Osalusi, Second law analysis of laminar flow in a channel filled with saturated porous media, Entropy, 7 (2004) 148–160.

DOI: 10.3390/e7020148

Google Scholar

[29] S. Mahmur, R. A. Fraser, Magnetohydrodynamic free convection and entropy generation in a square porous cavity, International Journal of Heat and Mass Transfer, 47 (2004) 3245-3256.

DOI: 10.1016/j.ijheatmasstransfer.2004.02.005

Google Scholar

[30] O. D. Makinde, A. Aziz, Second law analysis for variable viscosity plane Poiseuille flow with asymmetric convective cooling, Computer and Mathematics with Applications, 60 (2010) 3012-3019.

DOI: 10.1016/j.camwa.2010.09.063

Google Scholar

[31] O D Makinde, Irreversibility analysis for a gravity driven non-Newtonian liquid film along an inclined isothermal plate, Physica Scripta, 74 (2006) 642–645.

DOI: 10.1088/0031-8949/74/6/007

Google Scholar

[32] A. Aziz, W. A. Khan, Entropy Generation in an Asymmetrically Cooled Slab with Temperature-Dependent Internal Heat Generation, Heat Transfer—Asian Research, 41 (2012), 260-271.

DOI: 10.1002/htj.20404

Google Scholar

[33] A. Khan, I. Khan, F. Ali, S. Shafie, A note on entropy generation in MHD flow over a vertical plate embedded in a porous medium with arbitrary shear stress and ramped temperature, Journal of Porous Media, 19 (2016) 175-187.

DOI: 10.1615/jpormedia.v19.i2.50

Google Scholar

[34] A. J. Chamkha, M. Ismael, A. Kasaeipoor, T. Armaghani, Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field, Entropy 18 (2016).

DOI: 10.3390/e18020050

Google Scholar

[35] A. S. Butt, A. Ali, Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation, Journal of Mechanical Science and Technology, 28 (2014) 343-348.

DOI: 10.1007/s12206-013-0971-4

Google Scholar

[36] M. M. Rashidi, N. Freidoonimehr, Analysis of entropy generation in MHD stagnation-point flow in porous media with heat transfer, International Journal for Computational Methods in Engineering science and Mechanics, 15 (2014) 345-355.

DOI: 10.1080/15502287.2014.915248

Google Scholar

[37] O. D. Makinde, Entropy for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition, International journal of Exergy, 10 (2012) 142-154.

DOI: 10.1504/ijex.2012.045862

Google Scholar

[38] M. M. Rashidi, F. Mohammadi, S. Abbasbandy and M.S. Alhuthali, Entropy generation analysis for stagnation point flow in a porous medium over a permeable stretching surface, Journal of Applied Fluid Mechanics, 8 (2015) 753- 765.

DOI: 10.18869/acadpub.jafm.67.223.22916

Google Scholar

[39] S. Das, R. N. Jana, O. D. Makinde, Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating, Journal of Heat and Mass Transfer Research, 2 (2015) 51-61.

Google Scholar

[40] A. K. A. Hakeem, M. Govindaraju, B. Ganga, M. Kayalvizhi, Second law analysis for radiative MHD slip flow of a nanofluid over a stretching sheet with non-uniform heat source effect, Scientia Iranica, 23 (2016) 1524-1538.

DOI: 10.24200/sci.2016.3916

Google Scholar