Study of the Very First Stages of Mg Growth onto Si(100)

Article Preview

Abstract:

Generation of ultra-thin oxide layers (in the nanometer range) is currently a technological lock for numerous applications such as microelectronics, spintronics or even molecular electronics. A precise study of the stages of growth of Mg is essential before studying the growth of the oxide. In this work we report and discuss an experimental study of the very first stages of Mg growth onto Si(100) by Scanning Tunneling Microscopy-Spectroscopy (STM-STS), Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). First, we have shown that an amorphous underlayer is formed onto the silicon substrate for Mg deposits of 0.25 monolayers (ML). This underlayer is attributed to a Mg2Si silicide formed at RT during Mg deposition. Then, using an original growth method based on alternate cycles of magnesium monolayer adsorption and room temperature (RT) oxidation, we did grow ultra-thin magnesium oxide films onto Si(100). Our study revealed that the ultra-thin Mg2Si layer at the MgO/Si(100) interface acts as a diffusion barrier and prevents oxidation of the highly-reactive silicon during magnesium oxide growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] S. Dash, S. Sharmal, R. Patell, M. d. Jong et R. Jansen, Nature, 462 (2009) 491.

Google Scholar

[2] R. Jansen, Nat. Mater., 11 (2012) 400.

Google Scholar

[3] C.Y. Su, M. Frederickx, M. Menghini, L. Dillemans, R. Lieten, T. Smets, J.W. Seo et J.P. Locquet, Thin Solid Films, 520 (2012) 4508.

DOI: 10.1016/j.tsf.2011.10.133

Google Scholar

[4] L. Yan, C. M. Lpoez, R. P. Shrestha, and E. A. Irene, Appl. Phys. Lett. 88 (2006) 142901.

Google Scholar

[5] A. Kohn, A. Kovacs, T. Uhrmann, T. Dimopoulos, and H. Brückl, Appl. Phys. Lett. 95, 042506 (2009).

Google Scholar

[6] M. Ning, Y. Y. Mi, C. K. Ong, P. C. Lim, and S. J. Wang, J. Phys. D: Appl. Phys. 40 (2007) 3678.

Google Scholar

[7] T. Chen, X. M. Li, S. Zhang, H. R. Zeng, J. Crys. Growth 270 (2004) 553.

Google Scholar

[8] D. K. Fork, F. A. Ponce, J. C. Tramontana, and T. H. Geballe, Appl. Phys. Lett. 58 (1991) 2294.

Google Scholar

[9] B. Brennan, S. McDonnell, G. Hughes, Thin Solid Films 518 (2010) (1980).

Google Scholar

[10] G. X. Miao, J. Y. Chang, M. J. van Veenhuizen, K. Thiel, M. Seibt, G. Eilers, M. Münzenberg, and J. S. Moodera, Appl. Phys. Lett 93 (2008) 142511.

DOI: 10.1063/1.2999633

Google Scholar

[11] P. Casey, E. O'Connor, R. Long, B. Brennan, S. A. Krasnikov, D. O'Connel, P. K. Hurley, G. Hughes, Microelectron. Eng. 86 (2009) 1711.

Google Scholar

[12] P. Casey, G. Hughes, E. O'Connor, R. D. Long, P. K. Hurley, J. Phys.: Conf. Series 100 (2008) 042046.

Google Scholar

[13] V. V. Afanasev, A. Stesmans, K. Cherkaoui, and P. K. Hurley, Appl. Phys. Lett. 96 (2010) 052103.

Google Scholar

[14] H. Oughaddou, S. Vizzini, B. Aufray, B. Ealet, J. -M. Gay, J. -P. Biberian, F. Arnaud D'Avitaya, Appl. Surf. Sci. 252 (2006) 4167.

Google Scholar

[15] S. Vizzini, H. Oughaddou, C. Leandri, V. K. Lazarov, A. Kohn, K. Nguyen, C. Coudreau, J. -P. Biberian, B. Ealet, J. -L. Lazzari, F. A. d'Avitaya, and B. Aufray, J. Cryst. Growth 305 (2007) 26.

DOI: 10.1016/j.jcrysgro.2007.03.037

Google Scholar

[16] B. Sarpi, R. Daineche, C. Girardeaux, M. Bertoglio, F. Derivaux, J. P. Biberian, A. Hemeryck, and S. Vizzini, Applied Physics Letters 106 (2015) 021604.

DOI: 10.1063/1.4905592

Google Scholar

[17] D.J. Chadi, Phys. Rev. Lett., vol. 43 (1979) 43.

Google Scholar

[18] R.M. Tromp, R.G. Smeenk et F.W. Saris, Phys. Rev. Lett., vol. 46 (1981) 9392.

Google Scholar

[19] M.R.J. van Buuren, C.L. Griffiths, H. van Kempen, Surface Science 314 (1994) 172.

Google Scholar

[20] R. Wolkov, Phys. Rev. Lett., vol. 68 (1992) 2636.

Google Scholar

[21] E. Clementi, D.L. Raimondi et W.P. Reinhardt, J. Chem. Phys., 38 (1963) 1686.

Google Scholar

[22] A. Vantomme, G. Langouche, J.E. Mahan et J.P. Becker, Microelec. Eng., 20 (2000) 273.

Google Scholar

[23] M.R.J. van Buuren, F. Voermans et H. van Kempen, J. Phys. Chem., 99 (1995) 9519.

Google Scholar