Finite Element Modeling of Silicon Transport into Germanium Using a Simplified Crystal Growth Technique

Article Preview

Abstract:

A numerical simulation study, using finite element method, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material configuration to that used in the Vertical Bridgman growth methods. The concentration profile for the Si-Ge sample processed using this technique shows increasing transport silicon into the melt with time, moreover, a flat stable interface is observed. The mass and momentum equations for fluid flow, the energy and the solute mass transport were numerically solved. Results showed good agreements with experiments.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

240-247

Citation:

Online since:

April 2011

Export:

Price:

[1] G. Müller: Mater. Sci. Forum Vol. 276-77 (1998), p.87.

Google Scholar

[2] S. Dost, B. Lent: Single Crystal Growth of Semiconductors from Metallic Solutions (Elsevier, Amsterdam, the Netherlands 2007).

DOI: 10.1016/b978-044452232-0/50005-5

Google Scholar

[3] R. Abbaschian, Crystal Growth, in Encyclopedia of Materials: Science and Technology, eds. K. H. J. Buschow, B. Ilschner, M. C. Flemings, S. Mahajan, and R. W. Cahn, Elsevier Science, New York, 2001, p.1860.

DOI: 10.1016/b0-08-043152-6/01863-5

Google Scholar

[4] A. Deal: PhD thesis, Florida University, (2004).

Google Scholar

[5] G. Müller: J. Crystal Growth Vol. 237–239 (2002), p.1628.

Google Scholar

[6] D.T.J. Hurle in: Melt Growth chapter in Crystal Growth, edited by P. Hartman, North-Holland, Amsterdam (1973).

Google Scholar

[7] K. Byrappa and T. Ohachi: Crystal Growth Technology, William Andrew Inc., New York, (2003).

Google Scholar

[8] F. Mechighel, M. Kadja, M. El Ganaoui, B. Pateyron: Defect Diffus. Forum Vols. 283-286 (2009), p.340.

DOI: 10.4028/www.scientific.net/ddf.283-286.340

Google Scholar

[9] F. Mechighel, M. Kadja, M. El Ganaoui, B. Pateyron, S. Dost: Defect Diffus. Forum Vols. 297-301 (2010), p.97.

DOI: 10.4028/www.scientific.net/ddf.297-301.97

Google Scholar

[10] G. Müller, A. Ostrogorsky: Convection in melt growth. In Handbook of Crystal Growth. (ed. D. T. J. Hurle), North-Holland, Amsterdam, vol. 2, (1994), pp.711-781.

Google Scholar

[11] N. Armour, S. Dost, B. Lent: Journal of Crystal Growth Vol. 299 (2007), p.227.

Google Scholar

[12] M. Yildiz, S. Dost, B. Lent: J. Crystal Growth Vol. 280 (2005), p.151.

Google Scholar

[13] F. Mechighel, N. Armour, A. Kidess, S. Dost, M. El Ganaoui, The 20th International Symposium on Transport Phenomena, 7-10 July, 2009, Victoria BC, Canada.

Google Scholar

[14] T.E. Tezduyar: Adv. Appl. Mech. Vol. 28 (1992), p.1.

Google Scholar

[15] T.E. Tezduyar, S. Mittal, S.E. Ray, R. Shih: Comput. Meth. Appl. Mech. Eng. Vol. 95 (1992), p.221.

Google Scholar

[16] J. Donea, A. Huerta: Finite Element Methods for Flow Problem (2003) John Wiley & Sons, Ltd.

Google Scholar

[17] J. Ed Akin, T.E. Tezduyar: Comput. Meth. Appl. Mech. Eng. (2004) Vol. 193, p. (1909).

Google Scholar

[18] W. Hackbusch: Volume 4 of Computational Mathematics. Springer–Verlag, Berlin, (1985).

Google Scholar

[19] COMSOL User Manual modeling, theory, (2007).

Google Scholar

[20] A.Y. Gelfgat, P.Z. Bar-Yoseph, A. l. Yarin: IJCFD Vol. 11 (1999), p.261.

Google Scholar

[21] F. Mechighel, M. El Ganaoui, M. Kadja, B. Pateyron and S. Dost: Fluid Dynamics and Materials Processing Vol. 5 (2009), p.313.

Google Scholar