Implanted Impurities in Wide Band Gap Semiconductors

Article Preview

Abstract:

Wide band gap semiconductors, mainly GaN, have experienced much attention due to their application in photonic devices and high-power or high-temperature electronic devices. Especially the synthesis of InxGa1-xN alloys has been studied extensively because of their use in LEDs and laser diodes. Here, In is added during the growth process and devices are already very successful on a commercial scale. Indium in nitride ternary and quaternary alloys plays a special role; however, the mechanisms leading to more efficient light emission in In-containing nitrides are still under debate. Therefore, the behaviour of In in GaN and AlN, the nitride semiconductor with the largest bandgap is an important field of study. In is also an important impurity in another wide band gap semiconductor – the II-VI compound ZnO where it acts as an n-type dopant. In this context the perturbed angular correlation technique using implantation of the probe 111In is a unique tool to study the immediate lattice environment of In in the wurtzite lattice of these wide band gap semiconductors. For the production of GaN and ZnO based electronic circuits one would normally apply the ion implantation technique, which is the most widely used method for selective area doping of semiconductors like Si and GaAs. However, this technique suffers from the fact that it invariably produces severe lattice damage in the implanted region, which in nitride semiconductors has been found to be very difficult to recover by annealing. The perturbed angular correlation technique is employed to monitor the damage recovery around implanted atoms and the properties of hitherto known impurity – defect complexes will be described and compared to proposed structure models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-179

Citation:

Online since:

March 2011

Export:

[1] M. Zacate and H. Jaeger: present volume.

Google Scholar

[2] Ioffe Institute, St. Petersburg, http: /www. ioffe. rssi. ru/SVA/NSM.

Google Scholar

[3] E.H. Kisi and M.M. Elcombe: Acta Cryst. C Vol. 45 (1989), p.1867.

Google Scholar

[4] J.E. Jaffe and A.C. Hess: Phys. Rev. B Vol. 48 (1993), p.7903.

Google Scholar

[5] L. Gerward and J.S. Olsen: J. Synchrotron Radiat. Vol. 2 (1995), p.233.

Google Scholar

[6] D.R. Lide (Ed. ): CRC Handbook of Chemistry and Physics, 73rd Edition (CRC Press, New York, 1992).

Google Scholar

[7] S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley and Sons, Ltd, West Sussex, England, 2005).

Google Scholar

[8] K. P. O'Donnell, R. W. Martin, and P. G. Middleton: Phys. Rev. Lett. Vol. 82 (1999), p.237.

Google Scholar

[9] T. Onuma, A. Chakraborty, B. A. Haskell, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, U. K. Mishra, T. Sota, and S. F. Chichibu: Appl. Phys. Lett. Vol. 86 (2005), p.151918.

DOI: 10.1063/1.1900947

Google Scholar

[10] F. A. Ponce , S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, S. Tanaka: Phys. Status Solidi B Vol. 240 (2003), p.273.

DOI: 10.1002/pssb.200303527

Google Scholar

[11] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze: Phys. Rev. Lett. Vol. 95 (2005), p.127402.

Google Scholar

[12] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota: Nature Materials Vol. 5 (2006).

DOI: 10.1038/nmat1726

Google Scholar

[13] V. Kachkanov, K. P. O'Donnell, S. Pereira, R. W. Martin: Philosophical Magazine Vol. 87 (2007), p. (1999).

Google Scholar

[14] C. Ronning, M. Dalmer, M. Deicher, M. Restle, M.D. Bremser, R.F. Davis, H. Hofsäss: Mat. Res. Soc. Symp. Proc. Vol. 468 (1997), p.407.

DOI: 10.1557/proc-468-407

Google Scholar

[15] A. Burchard, E.E. Haller, A. Stötzler, R. Weissenborn, M. Deicher, and the ISOLDE Collaboration: Physica B Vol. 273/274 (1999), p.96.

DOI: 10.1016/s0921-4526(99)00415-9

Google Scholar

[16] K. Lorenz, F. Ruske, and R. Vianden: Phys. Stat. Sol. (b) Vol. 228 (2001), p.331.

Google Scholar

[17] J. Bartels, K. Freitag, J.G. Marques, J.C. Soares and R. Vianden: Hyperfine Interact. Vol. 120/121 (1999), p.397.

DOI: 10.1023/a:1017080902893

Google Scholar

[18] K. Lorenz, PhD thesis, University of Bonn (2002).

Google Scholar

[19] K. Lorenz, R. Vianden: Phys. Stat. Sol. (c) Vol. 1 (2002), p.413.

Google Scholar

[20] J. Schmitz, J. Niederhausen, J. Penner, K. Lorenz, E. Alves, R. Vianden: Physica B Vol. 404 (2009), p.4866.

DOI: 10.1016/j.physb.2009.08.181

Google Scholar

[21] P. J. M. Smulders, D.O. Boerma: Nucl. Instrum. Methods Phys. Res. B Vol. 29 (1987), p.471.

Google Scholar

[22] R. Dogra, S.K. Shrestha, A.P. Byrne, M.C. Ridgway, A.V.J. Edge, R. Vianden, J. Penner, and H. Timmers: J. Phys.: Condens. Matter Vol. 17 (2005), p.6037.

DOI: 10.1088/0953-8984/17/38/009

Google Scholar

[23] D. Forkel, PhD thesis, University of Erlangen (1987).

Google Scholar

[24] F.D. Feiock and W.R. Johnson: Phys. Rev. Vol. 187 (1969), p.39.

Google Scholar

[25] R. M. Sternheimer: Bull. Amer. Phys. Soc. Vol. 12 (1967), p.108.

Google Scholar

[26] H. Granzer, H. H. Bertschat, H. Haas, W. -D. Zeitz, J. Lohmüller, and G. Schatz: Phys. Rev. Lett Vol. 77 (1996), p.4261.

DOI: 10.1103/physrevlett.77.4261

Google Scholar

[27] Value for Br taken from E.G. Wikner and T.P. Das: Phys. Rev. B Vol. 109 (1958), p.360.

Google Scholar

[28] P. Herzog, K. Freitag, M. Reuschenbach, and H. Walitzki: Z. Phys. A Vol. 294 (1980), p.13.

Google Scholar

[29] K. Lorenz, F. Ruske, and R. Vianden: Appl. Phys. Lett. Vol. 80 (2002), p.4531.

Google Scholar

[30] C.M. Lederer and V.A. Shirley (Ed. ): Table of Isotopes 7th edition (J. Wiley, New York, 1980).

Google Scholar

[31] M. Dietrich, M. Deicher, A. Stotzler, R. Weissenborn and the ISOLDE collaboration: Nucl. Phys. A Vol. 701 (2002), p.240.

Google Scholar

[32] T. Butz and A. Lerf: Phys. Lett. Vol. 97A (1987), p.217.

Google Scholar

[33] K. Lorenz, T. Geruschke, E. Alves and R. Vianden: Hyperfine Interact., Vol. 177 (2007), p.89.

Google Scholar

[34] R. Nédélec, R. Vianden and the ISOLDE Collaboration: Hyperfine Interact. Vol. 178 (2007), p.19.

Google Scholar

[35] R.E.J. Sears: Phys. Rev. B Vol. 22 (1980), p.1135.

Google Scholar

[36] Woo-Sik Jung, Oc Hee Han, Seen-Ae Chae: Materials Letters Vol. 61 (2007), p.3413.

Google Scholar

[37] H. Wolf, S. Deubler, D. Forkel, H. Foettinger, M Iwatschenko-Borho, F. Meyer, M. Renn, W. Witthuhn, and R. Helbig: Materials Science Forum, Vol. 10-12 (1986), p.863.

DOI: 10.4028/www.scientific.net/msf.10-12.863

Google Scholar

[38] S. Deubler, J. Meier, R. Schütz, and W. Witthuhn : Nuc. Instr. Meth. B Vol. 63 (1992), p.223.

Google Scholar

[39] R. Dogra, A.P. Byrne, M. C Ridgway: Optical Materials Vol. 31 (2009), p.1443.

Google Scholar

[40] E. Rita, J. G. Correia, U. Wahl, E. Alves, A.M.L. Lopes, and J.C. Soares, and the ISOLDE collaboration: Hyperfine Interact. Vol. 158 (2004), p.395.

DOI: 10.1007/s10751-005-9065-8

Google Scholar

[41] This work.

Google Scholar

[42] Th. Geruschke, Bonn, private communication.

Google Scholar

[43] R. Nédélec, R. Vianden, and the ISOLDE Collaboration : Optical Materials Vol. 28 (2006), p.723.

Google Scholar

[44] C. Ronning, M. Dalmer, M. Uhrmacher, M. Restle, U. Vetter, L. Ziegeler, H. Hofsäss, T. Gehrke, K. Järrendahl, R. F. Davis, and the ISOLDE Collaboration : J. Appl. Phys. Vol. 87 (2000), p.2149.

DOI: 10.1063/1.372154

Google Scholar

[45] R. Vianden in Nuclear Physics Applications in Materials Science edited by. E. Recknagel and J.C. Soares, NATO ASI series, series E Vol. 144 (1988), p.239, and Th. Wichert, Semiconductors and Semimetals Vol. 51B (1999), p.297.

Google Scholar

[46] R.D. Shannon and C.T. Prewitt: Acta Cryst. B Vol. 25 (1969), p.925.

Google Scholar

[47] F. De Wette: Phys. Rev. Vol. 123 (1961), p.103.

Google Scholar

[48] K. Lorenz and R. Vianden: Hyperfine Interact. Vol. 158 (2004), p.273.

Google Scholar

[49] C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis: Phys. Rev. B Vol. 54 (1996), p.17745.

DOI: 10.1103/physrevb.54.17745

Google Scholar

[50] J. Christiansen, P. Heubes, R. Keitel, W. Klinger, W. Loeffler, W. Sandner, and W. Witthuhn: Z. Phys. B Vol. 24 (1976), p.177.

DOI: 10.1007/bf01312998

Google Scholar

[51] P. Erhart N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, J. Phys.: Condens. Matter Vol. 18 (2006), p.6585.

DOI: 10.1088/0953-8984/18/29/003

Google Scholar

[52] G. Denninger and D. Reiser: Phys. Rev B Vol. 55 (1997), p.5073.

Google Scholar

[53] M. Corti, A. Gabetta, M. Fanciulli, A. Svane, and N. E. Christensen: Phys. Rev B Vol. 67 (2003), p.64416.

Google Scholar