Micro-Plasto-Hydrodynamic Lubrication a Fundamental Mechanism in Cold Rolling

Article Preview

Abstract:

This paper presents recent investigations in Micro-Plasto-Hydrodynamic (MPH) lubrication. Industrial evidences of the existence of MPH lubrication mechanism for cold rolling processes are presented. A new lubrication model developed for strip drawing processes is then applied to predict the MPH lubrication initiation and MPH lubrication extension along the tool-piece solid contacts initially in boundary lubrication regime. Finally, it is shown how this new MPH lubrication model can be implemented in a cold rolling model to maximize mills capabilities, determine optimum rolling oils properties and predict roughness transfer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

228-241

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] M. Laugier, M. Tornicelli, C. Silvy-Leligois, D. Bouquegneau, D. Launet, J.A. Alvarez, « Flexible lubrication concept, the future of cold rolling lubrication », extended paper version, Journal of Engineering Tribology, Part J, (2011).

DOI: 10.1177/1350650111414514

Google Scholar

[2] W.R.D. Wilson, Y. Sakaguchi, S.R. Schmid, A mixed flow model for lubrication with emulsions, STLE Tribology Transactions 37, 3 (1994) 543-551.

DOI: 10.1080/10402009408983327

Google Scholar

[3] Marsault, N., Montmitonnet, P., Deneuville, P., Gratacos, P., "A model of mixed lubrication for cold rolling of strip, Proc. NUMIFORM 98 (Twente University, June 1998). J. Huetink et al., eds. A.A. Balkema Publishers, Rotterdam, 1998, ISBN: 90 5410 970 X.

DOI: 10.1051/metal:2001196

Google Scholar

[4] P. Montmitonnet, P. Deneuville, P. Gratacos, G. Hauret, M. Laugier, «Understanding and modelling the mixed lubrication regime: summary of achievements and perspectives of industrial application » Revue de METALLURGIE, n°5, 459-463, May (2001).

DOI: 10.1051/metal:2001200

Google Scholar

[5] Wilson, W.R.D., Sakaguchi, Y., and Schmid, S.R., A Dynamic Concentration Model of Emulsions, Wear , v. 161, 1993, pp.207-212.

DOI: 10.1016/0043-1648(93)90471-w

Google Scholar

[6] Szeri, A.Z., and Wang, S.H., An elasto-pasto-hydrodynamic model of strip rolling with oil/water emulsion lubricant, Tribology International, v. 37, 2004, pp.169-176.

DOI: 10.1016/s0301-679x(03)00046-x

Google Scholar

[7] R. Guillaument, S. Vincent, J. Duclos , M. Laugier, P. Gardin, Plat-out modelling for cold rolling system lubricated with O/W emulsion. ICTMP, Nice June (2010).

Google Scholar

[8] Dbouk, T.; Montmitonnet, P.; Suzuki, N.; Takahama, Y.; Legrand, N.; Ngo, T.; Matsumoto, H.: Advanced roll bite models for cold and temper rolling processes. Proc. 9th Int. Rolling Conf. & 6th European Rolling Conf., Venice, Italy, (2013).

DOI: 10.4028/www.scientific.net/amr.966-967.48

Google Scholar

[9] Carretta, Y.; Stephany, A.; Legrand, N.; Laugier, M.; Ponthot, J.P.: Metalub – a slab method software for the numerical simulation of mixed lubrication regime. Application tocold rolling, Proc. 4th Int. Conf. on Tribology in Manufacturing Processes, Nice, France, (2010).

DOI: 10.1177/1350650111410126

Google Scholar

[10] Roelands, C.: Correlational Aspects of the viscosity-temperature-pressure relationship of lubricating oils, PhD Dissertation, Technische Hogeschool Delft, (1966).

DOI: 10.1115/1.3451519

Google Scholar

[11] J. Bech, N. Bay and M. Eriksen. Entrapment and escape of liquid lubricant in metal forming. Wear, 232, 134-139, (1999).

DOI: 10.1016/s0043-1648(99)00136-2

Google Scholar

[12] S.W. Lo, W. Wilson A theoretical Model of Micro-Pool Lubrication in Metal Forming. Journal of Tribology, Vol. 121, 731-738, (1999).

DOI: 10.1115/1.2834129

Google Scholar

[13] L. Dubar, C. Hubert, P. Christiansen, N. Bay, A. Dubois. Analysis of fluid lubrication mechanism at mesoscopic. CIRP annals – Manufacturing technology 61 (2012).

DOI: 10.1016/j.cirp.2012.03.126

Google Scholar

[14] A. Azushima et e. al. Experimental confirmation of the micro-plasto-hydrodynamic lubrication mechanism at the interface between work-piece and forming die. J. Jpn. Soc. Technol. Plast., 30, 1631-1638, (1989).

Google Scholar

[15] METAFOR. A large strain finite element software. LTAS-MN2L, ULg, http: /metafor. ltas. ulg. ac. be.

Google Scholar

[16] Y. Kimura, Y. Sodani, N. Nishiura, Y. Sakurai, The effect of Rolling Conditions on Chatter in Cold Rolling Mill of Thin Steel Strip, Proc. 7th Int. Conf. on Steel Rolling. Chiba (1998).

Google Scholar

[17] K. Kobayashi, N. Fujita, Y. Kimura, Y. Matsubara, Y. Sodani, Y. Amanuma, H. Nishihara, H. Minbu 'Lubrication control technology in tandem cold rolling mills - high-speed rolling by hybrid-lubrication system in tandem cold rolling mills - JFE Steel Co, 9th International Rolling conference, Venice-Italia , June (2013).

DOI: 10.1016/j.jmatprotec.2014.10.002

Google Scholar

[18] S. Cassarini, M. Laugier, P. Montmitonnet, « Metal Forming Lubrication by O/WEmulsions: modelling approach of critical velocity » (Keynote). Proc. ESAFORM 6, Salerno, April 2003, pp.731-734. V. Brucato, éditeur. Nuova Ipsa Editore srl, Palermo (2003).

Google Scholar