YSZ-Reinforced Mg-Based Amorphous Composites: Processing, Characterisation & Corrosion

Article Preview

Abstract:

MgZnCa amorphous matrix-based composites whereby reinforcing the matrix with suitable reinforcements to achieve enhanced mechanical, biomedical and anti-corrosion properties have been studied here. Here, MgZnCa-based composites have been developed with different amounts (0-25%wt) of yttria-stabilized zirconia (YSZ) reinforcement phase. The aim is to understand the corrosion behaviors of YSZ-reinforced MgZnCa-based composites in physiological saline solution. It is found that the incorporation of YSZ into amorphous MgZnCa matrix can cause crystallization of the amorphous matrix. The higher the YSZ introduced, the higher the degree of crystallization, and a fully crystalline matrix is obtained at a YSZ concentration of 25%. Electrochemical testing and ion release measurements, revealed that the composite with 8%YSZ possesses the smallest corrosion current density and the least ion release rate. Surface morphology analysis indicates a much stronger anti-corrosion ability of 8%YSZ-reinforced MgZnCa composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-129

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] H.E. Friedrich, B.L. Mordike. Magnesium Technology: Metallurgy, Design data, Applications. Springer-Verlag, Berlin, Germany, (2006).

Google Scholar

[2] G.L. Song, A. Atrens, X.L. Wu, B. Zhang, Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride. Corros Sci, 40 (1998) 1769-1791.

DOI: 10.1016/s0010-938x(98)00078-x

Google Scholar

[3] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino. Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corros Sci. 44 (2002) 603-630.

DOI: 10.1016/s0010-938x(01)00092-0

Google Scholar

[4] J. Britton, I. Pavord, K. Richards, A. Wisniewski, A. Knox, S. Lewis, A. Tattersfield, S. Weiss. Dietary magnesium, lung function, wheezing, and airway hyper-reactivity in a random adult population sample. Lancet. 344 (1994) 357-362.

DOI: 10.1016/s0140-6736(94)91399-4

Google Scholar

[5] M. Peuster, P. Beerbaum, F.W. Bach, H. Hauser. Are resorbable implants about to become reality? Cardiol Young, 16 (2006) 107-116.

DOI: 10.1017/s1047951106000011

Google Scholar

[6] G.L. Song. Control of biodegradation of biocompatible magnesium alloys. Corros Sci. 49 (2007) 1696-1701.

Google Scholar

[7] J. Nagels, M. Stokdijk, P.M. Rozing. Stress shielding and bone resorption in shoulder arthroplasty. J. Should. Elbow Surg. 12 (2003) 35-39.

DOI: 10.1067/mse.2003.22

Google Scholar

[8] S.G. Steinemann. Metal implants and surface reactions. Injury-International Journal of the Care of the Injured, 27 (1996) 16-22.

Google Scholar

[9] A. Pietak, P. Mahoney, G.J. Dias, M.P. Staiger. Bone-like matrix formation on magnesium and magnesium alloys. J. Mater Sci-Mater Med. 19 (2008) 407-415.

DOI: 10.1007/s10856-007-3172-9

Google Scholar

[10] D.E. Drachman, D.I. Simon. Inflammation as a mechanism and therapeutic target for in-stent restenosis. Curr Atheroscler Rep, 7 (2005) 44-49.

DOI: 10.1007/s11883-005-0074-5

Google Scholar

[11] J.H. Gao, S.K. Guan, J. Chen, L.G. Wang, S.J. Zhu, J.H. Hu, Z.W. Ren. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy. Appl. Sur Sci. 257 (2011) 2231-2237.

DOI: 10.1016/j.apsusc.2010.09.080

Google Scholar

[12] Y.S. Wang, M.J. Tan, J.J. Pang, Z. Wang, A.W.E. Jarfors, In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: From amorphous to crystalline, Mater Chem Phys. 134 (2012) 1079-1087.

DOI: 10.1016/j.matchemphys.2012.03.116

Google Scholar

[13] X. Gu, G.J. Shiflet, F.Q. Guo, S.J. Poon, Mg-Zn-Ca metallic glasses with high strength and significant ductility, J. Mater. Res. 20 (2005) 1935-(1938).

DOI: 10.1557/jmr.2005.0245

Google Scholar

[14] X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang, W.H. Wang. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials, 31 (2010) 1093-1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[15] B. Zberg, P.J. Uggowitzer, J.F. Loffler. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Mater. 8 (2009) 887-891.

DOI: 10.1038/nmat2542

Google Scholar

[16] J.S.C. Jang, L.J. Chang, J.H. Young, J.C. Huang, C.Y.A. Tsao. Synthesis and characterizatioin of the Mg-based amorphous/nano ZrO2 composite alloy, Intermetallics, 14 (2006) 945-950.

DOI: 10.1016/j.intermet.2006.01.011

Google Scholar

[17] M. Shanthi, M. Gupta, A.E.W. Jarfors, M.J. Tan, Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites Mater Sci. Eng. A, 528 (2011) 6045-6050.

DOI: 10.1016/j.msea.2011.03.103

Google Scholar

[18] Z. Ahmad. Principles of corrosion engineering and corrosion control. Elsevier, Butterwoth-Heinemann Press, Burlington, USA, (2006).

Google Scholar

[19] Y. Song, D. Shan, R. Chen, F. Zhang, E.H. Han. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater Sci Eng C 29 (2009) 1039-1045.

DOI: 10.1016/j.msec.2008.08.026

Google Scholar