Photoluminescence Studies on Spray Pyrolysis Deposited ZnO-SnO2 Mixed Thin Films

Article Preview

Abstract:

ZnO-SnO2 mixed thin films were prepared by the spray pyrolysis technique using different molar ratios of zinc and tin in the starting solution. These mixed thin films were analysed by X-ray diffraction (XRD) and photoluminescence spectroscopy (PL). XRD patterns of mixed thin films indicate the presence of tetragonal casseterite structure of SnO2 and hexagonal wurtzite phase of ZnO. The grain sizes of mixed films were calculated from XRD patterns and found to be in the range of 17- 84 nm. Mixed thin films exhibit smaller grain size compared to that of pure thin films. Ultraviolet and visible emission peaks were observed in photoluminescence studies of these thin films. The relative contribution of the emission bands occurring from different kinds of defects is described in detail. UV emission peaks were mostly affected by the influence of ZnO. Blue shift in UV emission peaks suggests a reduction in grain size in mixed thin film and bandgap modulation caused by SnO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

318-322

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] J.H. Lee, K.H. Ko, B.O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol-gel method, J. Cryst. Growth. 247 (2003) 119-125.

DOI: 10.1016/s0022-0248(02)01907-3

Google Scholar

[2] M. Okuya, S. Kaneko, K. Hiroshima, I. Yagi, K. Murakami, Low temperature deposition of SnO2 thin films as transparent electrodes by spray pyrolysis of tetra-n-butyltin (IV), J. Eur. Ceram. Soc. 21 (2001) 2099-2102.

DOI: 10.1016/s0955-2219(01)00180-7

Google Scholar

[3] S. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys. 84 (1998) 2287-2294.

DOI: 10.1063/1.368295

Google Scholar

[4] S. Chacko, M.J. Bushiri, V. Vaidyan, Photoluminescence studies of spray pyrolytically grown nanostructured tin oxide semiconductor thin films on glass substrates, J. Phys. D: Appl. Phys. 39 (2006) 4540-4543.

DOI: 10.1088/0022-3727/39/21/004

Google Scholar

[5] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Electrical conductivity, optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method, Physica E. 35 (2006) 131-138.

DOI: 10.1016/j.physe.2006.07.009

Google Scholar

[6] M. Lv, X. Xiu, Z. Pang, Y. Dai, S. Han, Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering, Appl. Surf. Sci. 252 (2006) 5687-5692.

DOI: 10.1016/j.apsusc.2005.07.042

Google Scholar

[7] T. Miyata, S. Suzuki, M. Ishii, T. Minami, New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering, Thin Solid Films. 411 (2002) 76-81.

DOI: 10.1016/s0040-6090(02)00191-8

Google Scholar

[8] T. Minami, S. Takata, H. Sato, H. Sonohara, Properties of transparent zinc‐stannate conducting films prepared by radio frequency magnetron sputtering, J. Vac. Sci. Technol., A 13 (1995) 1095-1099.

DOI: 10.1116/1.579592

Google Scholar

[9] T. Tharsika, A.S.M.A. Haseeb, M.F.M. Sabri, Structural and optical properties of ZnO-SnO2 mixed thin films deposited by spray pyrolysis, Thin Solid Films, http: /dx. doi. org/10. 1016/j. tsf. 2014. 02. 022.

DOI: 10.1016/j.tsf.2014.02.022

Google Scholar

[10] S. Sinha, T. Rakshit, S. Ray, I. Manna, Characterization of ZnO-SnO2 thin film composites prepared by pulsed laser deposition, Appl. Surf. Sci. 257 (2011) 10551-10556.

DOI: 10.1016/j.apsusc.2011.07.049

Google Scholar

[11] J. Zhao, J. Ni, X. Zhao, Y. Xiong, Preparation and characterization of transparent conductive zinc doped tin oxide thin films prepared by radio-frequency magnetron sputtering, Journal of Wuhan University of Technology-Mater. Sci. Ed. 26 (2011).

DOI: 10.1007/s11595-011-0235-z

Google Scholar

[12] A.I. Martinez, D.R. Acosta, Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO-SnO2 thin films prepared by spray pyrolysis, Thin Solid Films. 483 (2005) 107-113.

DOI: 10.1016/j.tsf.2004.12.047

Google Scholar

[13] E. Çetinörgü, S. Goldsmith, R. Boxman, Air annealing effects on the optical properties of ZnO-SnO2 thin films deposited by a filtered vacuum arc deposition system, Semicond. Sci. Technol. 21 (2006) 364-369.

DOI: 10.1088/0268-1242/21/3/027

Google Scholar

[14] D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis, J. Electroceram. 14 (2005) 103-111.

DOI: 10.1007/s10832-005-0870-x

Google Scholar

[15] T. Prasada Rao, M. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis, Appl. Surf. Sci. 255 (2009) 4579-4584.

DOI: 10.1016/j.apsusc.2008.11.079

Google Scholar

[16] B. Yao, Y. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation, Appl. Phys. Lett. 81 (2002) 757-759.

DOI: 10.1063/1.1495878

Google Scholar

[17] O. Fouad, G. Glaspell, M. El-Shall, Growth and characterization of ZnO, SnO2 and ZnO/SnO2 nanostructures from the vapor phase, Top. Catal. 47 (2008) 84-96.

DOI: 10.1007/s11244-007-9033-4

Google Scholar

[18] R. Yousefi, B. Kamaluddin, Effect of S- and Sn-doping to the optical properties of ZnO nanobelts, Appl. Surf. Sci. 255 (2009) 9376-9380.

DOI: 10.1016/j.apsusc.2009.07.039

Google Scholar

[19] J.X. Wang, X.W. Sun, S.S. Xie, Y. Yang, H.Y. Chen, G.Q. Lo, D.L. Kwong, Preferential growth of SnO2 triangular nanoparticles on ZnO nanobelts, J. Phys. Chem. C 111 (2007) 7671-7675.

DOI: 10.1021/jp070963l

Google Scholar

[20] D. Banerjee, J. Lao, D. Wang, J. Huang, Z. Ren, D. Steeves, B. Kimball, M. Sennett, Large-quantity free-standing ZnO nanowires, Appl. Phys. Lett. 83 (2003) 2061-(2063).

DOI: 10.1063/1.1609036

Google Scholar

[21] B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20 (2010) 1161-1165.

DOI: 10.1002/adfm.200902018

Google Scholar

[22] M. Ghosh, R. Ningthoujam, R. Vatsa, D. Das, V. Nataraju, S. Gadkari, S. Gupta, D. Bahadur, Role of ambient air on photoluminescence and electrical conductivity of assembly of ZnO nanoparticles, J. Appl. Phys. 110 (2011) 054307-054309.

DOI: 10.1063/1.3632059

Google Scholar

[23] A. Kar, M.A. Stroscio, M. Dutta, J. Kumari, M. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires, Appl. Phys. Lett. 94 (2009) 101905-101905(3).

DOI: 10.1063/1.3097011

Google Scholar

[24] N.D. Khoang, D.D. Trung, N. Van Duy, N.D. Hoa, N. Van Hieu, Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance, Sens. Actuators, B 174 (2012) 594-601.

DOI: 10.1016/j.snb.2012.07.118

Google Scholar