Synthesis of CdSe Quantum-Dots-Sensitized TiO2 Nanocomposites with Visible-Light Photocatalytic Activity

Article Preview

Abstract:

CdSe Quantum Dots (QDs) sensitized TiO2 photocatylysts were synthesized by a facile sol-gel method at room temperature. The effects of CdSe QDs concentration on the properties of the photocatalysts were studied by XRD, BET, SEM, UV/vis. The photocatalytic performance was investigated by degrading methylene blue (MB) under halogen-tungsten lamp irradiation. The results revealed that the catalysts doped with CdSe QDs show large surface area, small crystal size and narrow band gap. The catalysts doped with 0.05% CdSe QDs possessed the best activity, and the degradation efficiency of methylene blue (MB) is up to 99.2% within 180 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] Chong MengNan, Jin Bo, Chow Christopher W. K, etc. Recent developments in photocatalytic water treatment technology: A review [J]. Water Research. 2010, 44(10): 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[2] Tong Hua, Ouyang Shuxin, Bi Yingpu, etc. Nano-photocatalytic Materials: Possibilities and Challenges [J]. Advanced Materials. 2012, 24(2): 229-251.

DOI: 10.1002/adma.201102752

Google Scholar

[3] Yu Jiaguo, Fan Jiajie, Lv Kangle. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells [J]. Nanoscale. 2010, 2(10): 2144-2149.

DOI: 10.1039/c0nr00427h

Google Scholar

[4] Dozzi Maria Vittoria, Selli Elena. Effects of phase composition and surface area on the photocatalytic paths on fluorinated titania. Catalysis Today [J]. 2013, 206: 26-31.

DOI: 10.1016/j.cattod.2012.03.029

Google Scholar

[5] Hou Yang, Li Xinyong, Zhao Qidong, etc. Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity [J]. Advanced Functional Materials. 2010, 20(13): 2165-2174.

DOI: 10.1002/adfm.200902390

Google Scholar

[6] Teng Wei, Li Xinyong, Zhao Qidong, etc. In situ capture of active species and oxidation mechanism of RhB and MB dyes over sunlight-driven Ag/Ag3PO4 plasmonic nanocatalyst [J]. Applied Catalysis B. 2012, 125: 538-545.

DOI: 10.1016/j.apcatb.2012.05.043

Google Scholar

[7] Hou Yang, Li Xinyong, Zhao Qidong, etc. TiO2 nanotube/Ag-AgBr three-component nanojunction for efficient photoconversion [J]. Journal of Material Chemistry. 2011; 21(44): 18067-18076.

DOI: 10.1039/c1jm12788h

Google Scholar

[8] Li Xin, Huang Yuping, Chen Jian-Feng, etc. Visible light-driven binary dyes synergic degradation by iodine-doped TiO2 nanocrystal film [J]. Catalysis Communications. 2012, 20: 94-98.

DOI: 10.1016/j.catcom.2012.01.006

Google Scholar

[9] Hamal Dambar B., Klabunde Kenneth J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2 [J]. Journal of Colloid and Interface Science. 2007, 311(2): 514-522.

DOI: 10.1016/j.jcis.2007.03.001

Google Scholar

[10] Hou Yang, Li Xinyong, Zou Xuejun, etc. Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation [J]. Environmental Science and Technology. 2009, 43(3): 858-863.

DOI: 10.1021/es802420u

Google Scholar

[11] Guijarro Ne stor, Lana-Villarreal Teresa, Mora-Sero Iva n, etc. CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment [J]. Journal of Physical Chemistry C. 2009, 113(10): 4208-4214.

DOI: 10.1021/jp808091d

Google Scholar

[12] Li Guisheng, Zhang Dieqing, Yu Jimmy C. A New Visible-Light Photocatalyst: CdS Quantum Dots Embedded Mesoporous TiO2 [J]. Environmental Science & Technology. 2009, 43(18): 7079-7085.

DOI: 10.1021/es9011993

Google Scholar

[13] Li Tzung-Luen, Teng Hsisheng. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes [J]. Journal of Materials Chemistry. 2010 2010; 20(18): 3656-3664.

DOI: 10.1039/b927279h

Google Scholar

[14] Wang Defa, Zhao Haiguang, Wu Nianqiang, etc. Nanohybrids via Quantum Confinement [J]. Journal of Physical Chemistry Letters. 2010, 1(7): 1030-1035.

Google Scholar

[15] Weiss Emily A., Chiechi Ryan C., Geyer Scott M., etc. Size-dependent charge collection in junctions containing single-size and multi-size arrays of colloidal CdSe quantum dots. Journal of the American Chemical Society [J]. 2008, 130(1): 74-82.

DOI: 10.1021/ja076438h

Google Scholar

[16] Bang Jin Ho, Kamat Prashant V. Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe. Advanced Functional Materials [J]. 2010, 20(12): 1970-(1976).

DOI: 10.1002/adfm.200902234

Google Scholar

[17] Kongkanand Anusorn , Tvrdy Kevin, †, Takechi Kensuke, etc. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. Journal of the American Chemical Society. 2008, 130(12): 4007-4015.

DOI: 10.1021/ja0782706

Google Scholar

[18] Kang Qing, Yang Lixia, †, Chen Yufang, etc. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1-x/TiO2 Nanotube Structure-Based Label-Free Immunosensor [J]. Analytical Chemistry. 2010, 82(23): 9749-9754.

DOI: 10.1021/ac101798t

Google Scholar

[19] Loa Shih-Chen, Lina Cheng-Fang, Wub Chung-Hsin, etc. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol [J]. Journal of Hazardous Materials. 2004, 114(1-3): 183-190.

DOI: 10.1016/j.jhazmat.2004.08.007

Google Scholar

[20] Xue Jinbo, Shen Qianqian, Liang Wei, etc. Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light [J]. Electrochimica Acta. 2013, 97: 10-16.

DOI: 10.1016/j.electacta.2013.03.004

Google Scholar

[21] Yang Haihua, Fan Wenguang, Vaneski Aleksandar, etc. Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size-Dependency and Interfacial Contact on Photoconversion Efficiencies [J]. Adv Funct Mater. 2012; 22(13): 2821-2829.

DOI: 10.1002/adfm.201103074

Google Scholar

[22] Zhou Ji, Ji Tian-hao, Li Li, etc. Preparation of CdSe Nanoparticle-Deposited TiO2 Nanobelts and Their Visible-Light Photocatalysis [J]. Spectroscopy and Spectral Analysis. 2011, 31(5): 1398-1402.

Google Scholar

[23] Korala L, Wang Z, Liu Y, Maldonado S, Brock SL. Uniform Thin Films of CdSe and CdSe (ZnS) Core(Shell) Quantum Dots by Sol-Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications [J]. Acs Nano. 2013, 7(2): 1215-1223.

DOI: 10.1021/nn304563j

Google Scholar

[24] Vercelli B, Zotti G, Berlin A, et al. Oligo(poly)thiophene Sensitization of CdSe Nanocrystal and TiO2 Polycrystalline Electrodes: A Photoelectrochemical Investigation [J]. Journal of Physical Chemistry. 2012, 116(2): 2033-(2039).

DOI: 10.1021/jp209042c

Google Scholar

[25] Poulose Aby Cheruvathoor, Veeranarayanan Srivani, Varghese Saino Hanna, etc. Functionalized electrophoretic deposition of CdSe quantum dots onto TiO2 electrode for photovoltaic application [J]. Chemical Physics Letters. 2012, 539: 197-203.

DOI: 10.1016/j.cplett.2012.05.007

Google Scholar