Effect of TiO2 Nanotube Arrays on Osseointegration for Dental Implant

Article Preview

Abstract:

Dental implant with porous surface has been studied by many researchers because it has a good osseointegration. TiO2 nanotube arrays on the surface of dental implant could provide the porous surface, the space of drug loading, and better biocompatibility than bare surface. To investigate the effects of TiO2 nanotube arrays for dental implant, commercial dental implant was used and its surface was anodized to fabricate TiO2 nanotube arrays. Highly ordered TiO2 nanotube arrays were grown on the surface of dental implant. Ethylene glycol based electrolyte was used in anodic oxidation process. Anodic oxidation voltage and time were 50V and 15 min, respectively. The micro structure was observed by FE-SEM. The diameter and length of TiO2 nanotube arrays were ~60 nm and 10μm, respectively. BMP-2 was loaded in TiO2 nanotube arrays. For in-vivo testing, the dental implant with TiO2 nanotube arrays was applied to rabbit legs for 8 weeks. In dental implant with TiO2 nanotube arrays, good osseointegration properties were observed. TiO2 nanotube arrays fabricated by anodic oxidation will be very useful in the field of bone implants and bone tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-74

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media, Electrochimi Acta. 45 (2000) 921–929.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[2] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures, Chem. Commun. 20 (2009) 2791–2808.

DOI: 10.1039/b822726h

Google Scholar

[3] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells. 90 (2006).

DOI: 10.1016/j.solmat.2006.04.007

Google Scholar

[4] H. Park, C. Yang, W. Choi, Organic and inorganic surface passivations of TiO2 nanotube arrays for dye-sensitized photoelectrodes, J. Power Sources 216 (2012) 36-41.

DOI: 10.1016/j.jpowsour.2012.05.060

Google Scholar

[5] K. Mun, S. Alvarez, W. Choi, M. Sailor, A Stable, Label-free Optical Interferometric Biosensor Based on TiO2 Nanotube Arrays. ACS Nano 4 (2010) 2070–(2076).

DOI: 10.1021/nn901312f

Google Scholar

[6] T. Albrektsson, P.I. Branemark, H.A. Hansson, J. Lindstrom, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand. 52 (1981) 155–170.

DOI: 10.3109/17453678108991776

Google Scholar

[7] Y.T. Sul, C. Johansson, A. Wennerberg, L.R. Cho, B.S. Chang, T. Albrektsson, Optimum surface properties of oxidized implants for reinforcement of osseointegration: Surface chemistry, oxide thickness, porosity, roughness, and crystal structure, Int. J. Oral Maxillofac. Implants 20 (2005).

Google Scholar

[8] K. Anselme, M. Bigerelle, B. Noel, A. Iost, P. Hardouin, Effect of grooved titanium substratum on human osteoblastic cell growth, J Biomed Mater Res. 60 (2002) 529–540.

DOI: 10.1002/jbm.10101

Google Scholar

[9] Y.T. Sul, C.B. Johansson, Y. Jeong, Oxidized implants and their influence on the bone response, J. Mater. Sci. Mater. Med. 12 (2001) 1025–1031.

Google Scholar

[10] Y.T. Sul, C.B. Johansson, Y. Kang, D.G. Jeon, T. Albrektsson, Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation, Clin. Implant Dent. Relat. Res. 4 (2002) 78–87.

DOI: 10.1111/j.1708-8208.2002.tb00156.x

Google Scholar

[11] Y.T. Sul, C.B. Johansson, A. Wennerberg, Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure, Int. J. Oral Maxillofac. Implants. 20 (2005).

Google Scholar

[12] Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson, The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Med Eng Phys. 23 (2001) 329–346.

DOI: 10.1016/s1350-4533(01)00050-9

Google Scholar

[13] Y.T. Sul, C.B. Johansson, S. Petronis, Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition, Biomaterials 23 (2002).

DOI: 10.1016/s0142-9612(01)00131-4

Google Scholar