Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy

Article Preview

Abstract:

The effects of Zr addition on martensitic transformation and the lattice parameters of α” (orthorhombic) martensite and β (bcc) phase were investigated in Ti-3mol%Mo-6mol%Sn based alloys containing up to 4mol%Zr using θ-2θ X-ray diffraction measurement (XRD) and differential scanning calorimetry (DSC). It was found by XRD that orthorhombic α” martensite phase is formed when Zr content is 0 to 2mol% while bcc β phase also existed in the alloy containing 2 to 4mol%Zr. Based on the lattice parameters in α” martensite and β parent phases evaluated, the transformation strains between α” and β phase calculated become slightly small with increasing Zr content. DSC revealed that, with increasing Zr content, reverse martensitic transformation start and finish temperatures decreased down to 410K with a rate of-30K/mol%Zr. It is concluded in the Ti-Mo-Sn alloy system that Zr addition stabilizes β phase and that Zr addition is effective to control martensitic transformation temperature without changing the transformation strains largely.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] M. Niinomi, Mater. Sci. Eng. A 243 (1998) 231-236.

Google Scholar

[2] M. Niinomi, Mater. Trans. 49 (2008) 2170-2178.

Google Scholar

[3] E. Eisenbarth, D. Velten, M. Muller, R. Thull, J.Breme, Biomaterials, 25 (2004) 5705-5713.

DOI: 10.1016/j.biomaterials.2004.01.021

Google Scholar

[4] A. Yamamoto, Y. Kohyama, H. Hosoda, S. Miyazaki, T. Hanawa, Mater. Trans. 48 (2007) 361-366.

Google Scholar

[5] A. Biesikierski, J. Wang, M. A. Gepreel, C. Wen, Acta. Biomater. 8 (2012) 1661-1669.

Google Scholar

[6] H. Kanetaka, H. Hosoda, Y. Shimizu, T, Kudo, Y. Zhang, M. Kano, Y. Sano, S. Miyazaki, Mater. Trans. 51 (2010) 1944-1950.

DOI: 10.2320/matertrans.m2010038

Google Scholar

[7] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243 (1998) 244-249.

Google Scholar

[8] H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, S. Miyazaki, Acta. Mater. 54 (2006) 2419-2429.

Google Scholar

[9] Y. Fukui, T. Inamura, H. Hosoda, K. Wakashima, S. Miyazaki, Mater. Trans. 45 (2007) 1077-1082.

Google Scholar

[10] J. Y. Kim, H. Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Mater. Sci. Eng. A 403 (2005) 334-339.

Google Scholar

[11] Y. Al-Zain, H. Y. Kim, H. Hosoda, T. H. Nam, S. Miyazaki, Acta. Mater. 58 (2010) 4212-4223.

DOI: 10.1016/j.actamat.2010.04.013

Google Scholar

[12] R. Davis, H. M. Flower, D. R. F. West, J. Mater. Sci. 14 (1979) 712-719.

Google Scholar

[13] T. Maeshima, M. Nishida, Mater. Trans. 45 (2004) 1101-1105.

Google Scholar

[14] H. Y. Kim, Y. Ohmatsu, J. I. Kim, H. Hosoda, S. Miyazaki, Mater. Trans. 45 (2004) 1190-1195.

Google Scholar

[15] T. Maeshima. M. Nishida, Mater. Trans. 45 (2004) 1196-1100.

Google Scholar

[16] T. Inamura, J. I. Kim, H. Y. Kim, H. Hosoda, K. Wakashima, S. Miyazaki, Phil. Mag. 87 (2007) 3325-3350.

Google Scholar

[17] T. Maeshima, S. Ushimaru, K. Yamauchi, M. Nishida, Mater. Trans. 47 (2006) 513-517.

Google Scholar

[18] T. Maeshima, S. Ushimaru, K. Yamauchi, Mater. Sci. Eng. A 438-440 (2006) 844-847.

Google Scholar

[19] The Japan Institute of Metals and Materials: Kinzoku Databook, forth ed., Maruzen, Japan, 2004.

Google Scholar

[20] S. Miyazaki, H. Y. Kim, Mater. Sci. Forum, 561-565 (2007) 5-21

Google Scholar