Synthesis of Low Fouling Porous Polymeric Membranes

Article Preview

Abstract:

The fouling problem has to be solved because fouling significantly reduces the performance of porous polymeric membranes. This paper presents methods to prepare low fouling membranes or to modify commercial/existing membranes to be low fouling membranes. At first, the principle of membrane separation as well as fouling phenomenon is presented. Important low fouling characters are also outlined. Thereafter, modification of membrane polymers to obtain low fouling character, principle as well as recent development in preparation of low fouling polymeric membranes and membrane modification of commercial/existing membrane are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-19

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] D. He, H. Susanto, M. Ulbricht. Photo-irradiation for preparation, modification and stimulation of polymeric membranes, Prog. Polym. Sci. 34 (2009) 62.

DOI: 10.1016/j.progpolymsci.2008.08.004

Google Scholar

[2] M. Cheryan, Ultrafiltration and microfiltration handbook, Technomic Publishing Company Inc., Pennsylvania, (1998).

Google Scholar

[3] M. Ulbricht, Advanced functional polymer membranes, Polymer 47 (2006) 2217.

Google Scholar

[4] M.K. Ko, J.J. Pellegrino, R. Nassimbene, P. Marko, Characterization of the adsorption-fouling layer using globular proteins on ultrafiltration membranes, J. Membr. Sci. 76 (1993) 101.

DOI: 10.1016/0376-7388(93)85210-n

Google Scholar

[5] E. Ostuni, R.G. Chapman, R.E. Holmin, S. Takayama, G.M. Whitesides, A survey of the structure-property relationships of surfaces that resist the adsorption of protein, Langmuir 17 (2001) 5605.

DOI: 10.1021/la010384m

Google Scholar

[6] R.S. Kane, P. Deschatelets, G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces, Langmuir 19 (2003) 2388.

DOI: 10.1021/la020737x

Google Scholar

[7] J.F. Blanco, J. Sublet, Q.T. Nguyen, P. Schaetzel, Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J Membr. Sci. 283 (2006) 27.

DOI: 10.1016/j.memsci.2006.06.011

Google Scholar

[8] R. Guan, H. Zou, D. P Lu., C.L. Gong, Y.F. Liu, Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics, Eur. Polym. J. 41 (2005) 1554.

DOI: 10.1016/j.eurpolymj.2005.01.018

Google Scholar

[9] R. Guan, H. Dai, C. Li, J. Liu, J. Xu, Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes, J. Membr. Sci. 277 (2006) 148.

DOI: 10.1016/j.memsci.2005.10.025

Google Scholar

[10] R. Pedicini, A. Carbone, A. Sacca, I. Gatto, G. Di Marco, E. Passalacqua, Sulphonated polysulphone membranes for medium temperature in polymer electrolyte fuel cells (PEFC), Polym. Test. 27 (2008) 248.

DOI: 10.1016/j.polymertesting.2007.11.002

Google Scholar

[11] A. Dyck, D. Fritsch, S.P. Nunes, Proton-conductive membranes of sulfonated polyphenylsulfone, J. Appl. Polym. Sci. 86 (2002) 2820.

DOI: 10.1002/app.11264

Google Scholar

[12] C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes – A review of methods, Prog. Mat. Sci. 58 (2013) 76.

Google Scholar

[13] Q. Shi, Y. Su, W. Zhao, C. Li, Y. Hu, Z. Jiang, S. Zhu, Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. J Membr. Sci 319 (2008) 271.

DOI: 10.1016/j.memsci.2008.03.047

Google Scholar

[14] Q.F. Zhang, S.B. Zhang, L. Dai, X.S. Chen, Novel zwitterionic poly(arylene ether sulfone) as antifouling membrane material, J. Membr. Sci 349 (2010) 217.

DOI: 10.1016/j.memsci.2009.11.048

Google Scholar

[15] B. Deng, J.Y. Li, Z.C. Hou, S.D. Yao, L.Q. Shi, G.M. Liang, et al., Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence, Radiat. Phys. Chem. 77 (2008) 898.

DOI: 10.1016/j.radphyschem.2008.02.008

Google Scholar

[16] D.S. Wang, W. Zou, L.L. Li, Q. Wei, S.D. Sun, C.S. Zhao, Preparation and characterization of functional carboxylic polyethersulfone membrane, J. Membr. Sci 374 (2011) 93.

DOI: 10.1016/j.memsci.2011.03.021

Google Scholar

[17] P.L. Bai, X.L. Cao, F.M. Cao, Y.L. Ma, H.C. Li, C.S. Zhao, Modification of polyethersulfone matrix by grafting functional groups and the research of biomedical performance, J. Biomater. Sci., Polym. Eds. 21 (2010) 1559.

Google Scholar

[18] M. Peyravi, A. Rahimpour, M. Jahanshahi, A. Javadi, A. Shocravi, Tailoring the surface properties of PES Ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer, Microporous Mesoporous Mater. 160 (2012).

DOI: 10.1016/j.micromeso.2012.04.036

Google Scholar

[19] H. Susanto, M. Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, J. Membr. Sci. 327 (2009) 125.

DOI: 10.1016/j.memsci.2008.11.025

Google Scholar

[20] C. Causserand, M. Nyström, P. Aimar, Study of streaming potentials of clean and fouled ultrafiltration membranes, J. Membr. Sci. 88 (1994) 211.

DOI: 10.1016/0376-7388(94)87007-1

Google Scholar

[21] W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci. 318 (2008) 405.

DOI: 10.1016/j.memsci.2008.03.013

Google Scholar

[22] M. Masuelli, J. Marchese, N.A. Ochoa, SPC/PVDF membranes for emulsified oily wastewater treatment, J. Membr. Sci. 326 (2009) 688.

DOI: 10.1016/j.memsci.2008.11.011

Google Scholar

[23] R.M. Boom, H.W. Reinders, H.H.W. Rolevink, Th. van den Boomgaard, C.A. Smolders, Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers. I. Experiments, Macromolecules 27 (1994) (2041).

DOI: 10.1021/ma00086a010

Google Scholar

[24] D.B. Mosqueda-Jimenez, R.M. Narbaitz, T. Matsuura, G. Chowdhury, G. Pleizier, J.P. Santerre, Influence of processing conditions on the properties of ultrafiltration membranes, J. Membr. Sci. 231 (2004) 209.

DOI: 10.1016/j.memsci.2003.11.026

Google Scholar

[25] J.H. Kim, K. H Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr. Sci. 138 (1998) 153.

Google Scholar

[26] A. Rahimpour, S.S. Madaeni, Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution, J. Membr. Sci. 360 (2010) 371.

DOI: 10.1016/j.memsci.2010.05.036

Google Scholar

[27] A. Rahimpour , S. S. Madaeni, M. Jahanshahi, Y. Mansourpanah, N. Mortazavian, Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties, Appl. Surf. Sci. 255 (2009).

DOI: 10.1016/j.apsusc.2009.06.123

Google Scholar

[28] A.L. Ahmad, A.A. Abdulkarim, B.S. Ooi, S. Ismail, Recent development in additives modifications of polyethersulfone membrane for flux enhancement, Chem. Eng. J. 223 (2013) 246.

DOI: 10.1016/j.cej.2013.02.130

Google Scholar

[29] M.N.A. Mohd Norddin, A.F. Ismail, D. Rana, T. Matsuura, A. Mustafa, A. Tabe-Mohammadi, Characterization and performance of proton exchange membranes for direct methanol fuel cell: Blending of sulfonated poly(ether ether ketone) with charged surface modifying macromolecule, J. Membr. Sci. 323 (2008).

DOI: 10.1016/j.memsci.2008.06.051

Google Scholar

[30] D. Rana, T. Matsuuraa, R.M. Narbaitz, C. Feng, Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes, J. Membr. Sci. 249 (2005) 103.

DOI: 10.1016/j.memsci.2004.09.034

Google Scholar

[31] D.B. Mosqueda-Jimenez, R.M. Narbaitz,T. Matsuura, Impact of membrane surface modification on the treatment of surface water, J. Environ. Eng. 130 (2004) 1450.

DOI: 10.1061/(asce)0733-9372(2004)130:12(1450)

Google Scholar

[32] M.N.A. Mohd Norddin, A.F. Ismail, D. Ranab, T. Matsuura, S. Tabe, The effect of blending sulfonated poly(ether ether ketone) with various charged surface modifying macromolecules on proton exchange membrane performance, J. Membr. Sci. 328 (2009).

DOI: 10.1016/j.memsci.2008.12.009

Google Scholar

[33] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (2011) 1.

Google Scholar

[34] L.P. Zhu, Z. Yi, F. Liu, X.Z. Wei, B.K. Zhu, Y.Y. Xu, Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes, Eur. Polym. J. 44 (2008).

DOI: 10.1016/j.eurpolymj.2008.03.015

Google Scholar

[35] L.F. Hancock, Phase inversion membranes with an organized surface structure from mixtures of polysulfone and polysulfone poly(ethylene oxide)block copolymers, J. App. Polym. Sci. 66 (1997) 1353.

DOI: 10.1002/(sici)1097-4628(19971114)66:7<1353::aid-app13>3.0.co;2-3

Google Scholar

[36] Z. Yi, L.P. Zhu, Y.Y. Xu, Y.F. Zhao, X. Ma, B.K. Zhu, Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes, J. Membr. Sci. 365 (2010) 25.

DOI: 10.1016/j.memsci.2010.08.001

Google Scholar

[37] X. Ma, Y. Su, Q. Sun, Y. Wang, Z. Jiang, Preparation of protein-adsorptionresistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer, J. Membr. Sci. 292 (2007) 116.

DOI: 10.1016/j.memsci.2007.01.024

Google Scholar

[38] Y. Zhao, Y. Qian, B. Zhu, Y. Xu, Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process, J. Membr. Sci. 310 (2008) 567.

DOI: 10.1016/j.memsci.2007.11.040

Google Scholar

[39] K.J. Kim KJ, A.G. Fane, C.J.D. Fell, The performance of ultrafiltration membranes pretreated by polymers, Desalination 70 (1988) 229.

DOI: 10.1016/0011-9164(88)85057-4

Google Scholar

[40] X. Ma, Y. Su, Q. Sun, Y. Wang, Z. Jiang, Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly(vinyl alcohol), J Membr. Sci. 300 (2007) 71.

DOI: 10.1016/j.memsci.2007.05.008

Google Scholar

[41] G. Chowdhury, S. Singh, C. Tsang, T. Matsuura, Thin-film composite membranes prepared from sulfonated poly(phenylene oxide): preparation, characterization, and performance. In: Pinnau I, Freeman BD, editors. ACS Publications; (2000).

DOI: 10.1021/bk-2000-0744.ch009

Google Scholar

[42] A.V.R. Reddy, D.J. Mohan, A. Bhattacharya, V.J. Shah, P.K. Ghosh, Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties, J. Membr. Sci. 214 (2003).

DOI: 10.1016/s0376-7388(02)00547-1

Google Scholar

[43] V. Kochkodan, D.J. Johnson, N. Hilal, Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling, Adv. Colloid Interface Sci. 2013 (in press), DOI: http: /dx. doi. org/10. 1016/j. cis. 2013. 05. 005.

DOI: 10.1016/j.cis.2013.05.005

Google Scholar

[44] Y. Li, H.M. Guan, T.S. Chung, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes, J. Membr. Sci 275(2006).

DOI: 10.1016/j.memsci.2005.08.015

Google Scholar

[45] N. Maximous, G. Nakhla, W. Wan, K. Wong, Performance of a novel ZrO2/PES membrane for wastewater filtration, J. Membr. Sci. 352 (2010) 222.

DOI: 10.1016/j.memsci.2010.02.021

Google Scholar

[46] K. Prashantha, S.G. Park, Nanosized TiO2-filled sulfonated polyethersulfone proton conducting membranes for direct methanol fuel cells, J. Appl. Polym. Sci. 98 (2005) 1875.

DOI: 10.1002/app.21970

Google Scholar

[47] T.H. Bae, I.C. Kim, T.M. Tak, Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes, J. Membr. Sci. 275 (2006)1.

DOI: 10.1016/j.memsci.2006.01.023

Google Scholar

[48] V. Kochkodan, S. Tsarenko, N. Potapchenko, V. Kosinova, V. Goncharuk, Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2, Desalination 220 (2008) 380.

DOI: 10.1016/j.desal.2007.01.042

Google Scholar

[49] A. Razmjou, J. Mansouri, V. Chen, M. Lim, R. Amal, Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process, J. Membr. Sci. 380 (2011) 98.

DOI: 10.1016/j.memsci.2011.06.035

Google Scholar

[50] S. Minko, Grafting on solid surfaces: grafting to" and "grafting from, methods. In: Manfred S, editor. Polymer surfaces and interfaces: characterization, modification and applications. Berlin/Heidelberg: E-Publishing, Springerlink. com; 2008, p.215.

DOI: 10.1007/978-3-540-73865-7_11

Google Scholar

[51] B. Zhao, W.J. Brittain. Polymer brushes: surface-immobilized macromolecules, Prog. Polym. Sci. 25 (2000) 677.

Google Scholar

[52] M. Ulbricht, H.G. Hicke, Photomodifizierung von Ultrafiltrationsmembranen, 1: Photochemische Modifizierungen von Polyacrylnitril-Ultrafiltrationsmembranen mit Arylaziden, Angew. Makromol. Chem. 210 (1993) 69.

DOI: 10.1002/apmc.1993.052100107

Google Scholar

[53] K. Kato, E. Uchida, E.T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains, Prog. Polym. Sci. 28 (2003) 209.

Google Scholar

[54] H. Yamagishi, J.V. Crivello, G. Belfort, Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes, J. Membr. Sci. 105 (1995) 237.

DOI: 10.1016/0376-7388(95)00063-i

Google Scholar

[55] J. Pieracci, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes using selective UV wavelengths, Chem. Mater. 14 (2002) 256.

DOI: 10.1021/cm010565+

Google Scholar

[56] B. Kaeselev, P. Kingshott, G. Jonsson, Influenced of the surface structure on the filtration performace of UV-modified PES membranes, Desalination 146 (2002) 265.

DOI: 10.1016/s0011-9164(02)00485-x

Google Scholar

[57] H. Susanto, M. Ulbricht, Photografted thin polymer hydrogel layers on PES ultrafiltration membranes : characterization, stability, and influence on separation performance, Langmuir 23 (2007) 7818.

DOI: 10.1021/la700579x

Google Scholar

[58] H. Susanto, M. Balakrishnan, M. Ulbricht , Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes, J. Membr. Sci. 288 (2007) 157.

DOI: 10.1016/j.memsci.2006.11.013

Google Scholar

[59] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, UV-Assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem. Mater. 12 (2000).

DOI: 10.1021/cm9907864

Google Scholar

[60] M. Ulbricht, Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities, React. Funct. Polym. 31 (1996) 165.

DOI: 10.1016/1381-5148(96)00055-7

Google Scholar

[61] J. Zhan, Z. Liu, B. Wang, F. Ding, Modification of a membrane surface charge by a low temperature plasma induced grafting reaction and its application to reduce membrane fouling, Sep. Sci. Technol. 39 (2004) 2977.

DOI: 10.1081/ss-200035950

Google Scholar

[62] M. Bryak, I. Gancarz. Plasma modification of polymer membranes. In: Hilal N, Khayet M, Wtright CJ, editors. Membrane modification: Technology and applications; 2012. p.179.

DOI: 10.1201/b12160-8

Google Scholar

[63] L. Michelle, M.L. Steen, L. Hymasa, E.D. Havey, N.E. Capps, D.G. Castner, E.R. Fisher, Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification,J. Membr. Sci. 188 (2001) 97.

DOI: 10.1016/s0376-7388(01)00375-1

Google Scholar

[64] M.L. Steen, A.C. Jordan, E.R. Fisher, Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment, J. Membr. Sci. 204 (2002) 341.

DOI: 10.1016/s0376-7388(02)00061-3

Google Scholar

[65] D.S. Wavhal, E.R. Fisher, Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling, Langmuir 19 (2003) 79.

DOI: 10.1021/la020653o

Google Scholar

[66] L.Y. Chu, S. Wang, W.M. Chen, Surface modification of ceramic-supported polyethersulfone membranes by interfacialpolymerization for reduced membrane fouling, Macromol. Chem. Phys. 206 (2005) (1934).

DOI: 10.1002/macp.200500324

Google Scholar

[67] S.X. Liu, J.T. Kim, S. Kim, M. Singh, The effect of polymer surface modification via interfacial polymerization on polymer– protein interaction, J. Appl. Polym. Sci. 112 (2009) 1704.

DOI: 10.1002/app.29606

Google Scholar

[68] M.N. Abu Seman, M. Khayet, N. Hilal, Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization, J. Membr. Sci. 348 (2010) 109.

DOI: 10.1016/j.memsci.2009.10.047

Google Scholar

[69] Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto, T. Fukuda, Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization, Adv. Polm. Sci. 197 (2006) 1.

DOI: 10.1007/12_063

Google Scholar

[70] G.F. Payne, M.V. Chaubal, T.A. Barbari, Enzyme-catalysed polymer modification: reaction of phenolic compounds with chitosan films, Polymer 37 (1996) 4643.

DOI: 10.1016/0032-3861(96)00338-2

Google Scholar

[71] A.C. Chao, S.S. Shyu, Y.C. Lin, F.L. Mi, Enzymatic grafting of carboxyl groups on to chitosan to confer on chitosan the property of a cationic dye adsorbent, Bioresour. Technol. 91 (2004) 157.

DOI: 10.1016/s0960-8524(03)00171-8

Google Scholar

[72] G. Kumar, P.J. Smith, G.F. Payne, Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions, Biotechnol. Bioeng. 63 (1999) 154.

DOI: 10.1002/(sici)1097-0290(19990420)63:2<154::aid-bit4>3.0.co;2-r

Google Scholar

[73] G. Kumar, J.F. Bristow, P.J. Smith, G.F. Payne, Enzymatic gelation of the natural polymer chitosan, Polymer 41 (2000) 2157.

DOI: 10.1016/s0032-3861(99)00360-2

Google Scholar

[74] N. Nady, M.C.R. Franssen, R.M. Boom, M.S. Mohy Eldin, H. Zuilhof, C.G.P.H. Schroën, Modification of PES membranes: an environmentally friendly approach, 13th Aachener Membrane Kolloquium, (2010).

DOI: 10.1016/j.memsci.2011.12.024

Google Scholar

[75] T. Gullinkala, I. Escobar, A green membrane functionalization method to decrease natural organic matter fouling, J. Membr. Sci. 360 (2010) 155.

DOI: 10.1016/j.memsci.2010.05.004

Google Scholar