The Spectral Element Method for the Steklov Eigenvalue Problem

Article Preview

Abstract:

This paper discusses the spectral element approximation with LGL node basis for the Steklov eigenvalue problem, and analyzes the a priori error estimates. Finally, numerical experi-ments on the square and the L-shaped domain are carried out to get very accurate approximations by the spectral element method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

631-635

Citation:

Online since:

December 2013

Export:

Price:

* - Corresponding Author

[1] S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathema-tical Physics, Academic Press, New York, USA (1953).

Google Scholar

[2] A. Alonso and A. Dello Russo, Spectral approximation of variationally posed eigenvalue prob-lems by non-conforming methods, J. Comput. Appl. Math., Vol. 223(2009), pp.177-197.

DOI: 10.1016/j.cam.2008.01.008

Google Scholar

[3] A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-soild vibrations, Numer. Math., Vol. 87(2000), pp.201-227.

DOI: 10.1007/s002110000175

Google Scholar

[4] A. B. Andreew and T. D. Todorov, Isoparametric finite element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal., (2004), pp.309-322.

DOI: 10.1093/imanum/24.2.309

Google Scholar

[5] Y. D. Yang, Q. Li and S. R. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., Vol. 59(2009), pp.2388-2401.

DOI: 10.1016/j.apnum.2009.04.005

Google Scholar

[6] E. M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Anal., Vol. 31(2011), pp.914-946.

DOI: 10.1093/imanum/drp055

Google Scholar

[7] L. Cao, L. Zhang, W. Allegretto and Y. P. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J. Numer. Anal., Vol. 51(2013), pp.273-296.

DOI: 10.1137/110850876

Google Scholar

[8] M. G. Armentano, C. Padra and R. Rodrguezc, An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations, Comput. Methods Appl. Mech. Engrg., Vol. 200 (2011), pp.178-188.

DOI: 10.1016/j.cma.2010.08.003

Google Scholar

[9] H. Bi and Y. D. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eighvalue promblem, Appl. Math. Comp., Vol. 217(2011), pp.9669-9678.

DOI: 10.1016/j.amc.2011.04.051

Google Scholar

[10] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer (2007).

DOI: 10.1007/978-3-540-30728-0

Google Scholar

[11] J. Shen, T. Tang and L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer, Heidelberg (2011), pp.367-410.

Google Scholar

[12] I. Babuska and J. Osborm, Eigenvalue Problems, in: P. G. Ciarlet, J. L. Lions, (Ed. ), Finite El-ement Methods (Part 1), Handbook of Numerical Analysis, vol. 2, Elsevier Science Publishers, North-Holand (1991), pp.640-787.

Google Scholar

[13] P. Grisvard, Elliptic Problems for Non-smooth Domains, SIAM, Philadelphia (2011).

Google Scholar

[14] Y. D. Yang, Finite Element Methods for Eigenvalue Problems (in Chinese), Science Press, Beijing (2012).

Google Scholar