Synthesis and Properties of Thermo- and pH-Sensitive Poly[(Sodium Humate)-(N-Isopropylacrylamide)-(Acrylic Acid)] Intelligent Hydrogel

Article Preview

Abstract:

A novel intelligent hydrogel of poly(Humic acid - Nisopropylacrylamide - Acrylic acid) (P(NIPAAm-HA-AA)) was prepared at 70°C by inverse suspension polymerization. The reactions include uses N,N-methylene-bis-acrylamide (MBA) as a cross-linking agent, ammonium persulfate (KPS) as an initiator, cyclohexane as a continuous phase and span-65 as dispersant. The influence such as concentration of monomers and cross-linking agent, mole fraction of span-65 in mixed monomers, and temperature of polymerization on the property of resulting P(NIPAAm-HA-AA) hydrogels was investigated in detail. Fourier transform infrared (FTIR) demonstrated that NIPAAm, HA and AA was synthetized successfully. The results showed that the swelling ratio (SR) of modified hydrogel was improved significantly with the dosage of NIPAAm. It was also observed that the thermosensitive and pH sensitive characteristics was strongly affected by concentrations of NIPAAm. At last, we choose NIPAAm: HA=0.3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 781-784)

Pages:

536-541

Citation:

Online since:

September 2013

Export:

Price:

[1] Z.X. Zhao, Z. Li, Q.B. Xia, E. Bajalis, H.X. Xi and Y.S. Lin: Chem. Eng. J. 142(2008) 263-270.

Google Scholar

[2] J.E. Elliott, M. Macdonald and J. Nie, C. N: Bowman. Polym. J. 45 (2004) 1503-1510.

Google Scholar

[3] J. Chen, M.L. Liu, H.L. Liu, L.W. Ma, C.M. Gao, S.Y. Zhu and S.P. Zhang: Chem. Eng. J. 2010, (159): 247-256.

Google Scholar

[4] H. Li, J. Chen and K.Y. Lam: Biomacromolecules 7 (2006)1951-(1959).

Google Scholar

[5] X.Z. Zhang and R.X. Zhuo: Langmuir 17 (2001) 12-16.

Google Scholar

[6] C. Wu, S.Q. Zhou and Single chain: Macromolecules 28 (1995) 8381-8387.

Google Scholar

[7] F.M. Winnik: Polymer 31 (1990) 2125-2134.

Google Scholar

[8] C.K. Chee, S. Rimmer, I. Soutar and L. Swanson: Polymer 38 (1997) 483-486.

Google Scholar

[9] M. Annaka, C. Tanaka, T. Nakahira, M. Sugiyama, T. Aoyagi and T. Okano: Macromolecules 35 (2002) 8173-8179.

DOI: 10.1021/ma020683y

Google Scholar

[10] X.Z. Zhang Y.Y. Yang and S.T. Chung: K.X. Ma, Langmuir 17 (2001) 6094-6099.

Google Scholar

[11] X.Z. Zhang Y.Y. Yang and S.T. Chung: Langmuir 18 (2002) 2538-2542.

Google Scholar

[12] X.Z. Zhang and C.C. Chu: Chem. Commun. 12 (2003) 1446-1447.

Google Scholar

[13] X.D. Xu, X.Z. Zhang, J. Yang, S.X. Cheng, R.X. Zhuo and Y.C. Huang: Langmuir 23 (2007) 4231-4236. ).

Google Scholar

[14] T. Miyata, N. Asami and T. Uragami: Nature 399 (1999) 766-769.

Google Scholar

[15] M. Shibayama, Y. Fujikawa, S. Nomura. Macromol. Chem. Phys. 29 (1996) 6535-6540.

Google Scholar

[16] V. Bulmus, Z. Ding, C.J. Long, P.S. Stayton and A.S. Hoffman: Bioconjugate Chem. 11 (2000) 78-83.

Google Scholar

[17] H. Chen and Y.L. Hsieh: J. Polym. Sci. Part A: Polym. Chem. 42 (2004) 6331-6339.

Google Scholar

[18] J. Zhang and N.A. Peppas: Macromol. Chem. Phys. 33 (2000)102-107.

Google Scholar

[19] Adam J and Robert Staruch. J: Controlled Release, 2012, 3, 157: 478-484.

Google Scholar

[20] Achour T, Chafia A, Didier H and Safia D.: J Sci. Health., Part A 2011, 23(7): 1095-1103.

Google Scholar

[21] D. Schmaljohann: Adv. Drug Deliv. Rev. 58 (2006) 1655-1670.

Google Scholar

[22] Ghanshyan S. Chauhan, Baljit Singh, Sandeep Chauhan, Monica Verma and Swati Mahajan: Deslination, 2005, 181: 217-224.

Google Scholar

[23] S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo and H. Misawa: Nature 408 (2000) 178-181.

DOI: 10.1038/35041522

Google Scholar

[24] J.P. Magnusson, A. Khan, G. Pasparakis, A.O. Saeed, W. Wang and C. Alexander: J. Am. Chem. Soc. 130 (2008) 10852-10853.

DOI: 10.1021/ja802609r

Google Scholar