Synthesis and Photoelectrical Properties of Graphene-CuxO Nanostructures

Article Preview

Abstract:

As a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal, and mechanical properties, graphene has been investigated for many applications. In this work, we present a facile route for the integration of graphene with light-sensitive copper oxides for optoelectronic applications. Graphene synthesized by a solvothermal process is found to be a robust substrate on which photoconductive CuxO with a particle size of about 50 nm can be deposited by a simple method. The morphology of graphene and graphene-CuxO is characterized by SEM and TEM. Photoluminescence measurements are also conducted, and the results show that the excited fluorophore in the P3HT backbone is effectively quenched by the electronic interactions at P3HT/graphene interfaces; however, the incorporation of CuxO increases the excited fluorophore. Photoelectrical experiments show that clean, cheap and easily prepared CuxO/graphene has much stronger photo-induced electrical current compared with graphene, thus suggesting a promising candidate for organic photovoltaic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-234

Citation:

Online since:

June 2013

Export:

Price:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[3] A. H. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[4] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4 (2010) 611-622.

DOI: 10.1038/nphoton.2010.186

Google Scholar

[5] M. J. Allen, V. C. Tung, R. B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev. 110 (2010) 132-145.

DOI: 10.1021/cr900070d

Google Scholar

[6] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Graphene: The New Two-Dimensional Nanomaterial, Angew. Chem. Int. Ed. 48 (2009) 7752-7777.

DOI: 10.1002/anie.200901678

Google Scholar

[7] M. I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today 10 (2007) 20-27.

Google Scholar

[8] I. Robel, B. A. Bunker, P. V. Kamat, Single-Walled Carbon Nanotube-CdS Nanocomposites as Light-Harvesting Assemblies: Photoinduced Charge-Transfer Interactions, Adv. Mater. 17 (2005) 2458-2463.

DOI: 10.1002/adma.200500418

Google Scholar

[9] B. J. Landi, S. L. Castro, H. J. Ruf, C. M. Evans, S. G. Bailey, R. P. Raffaelle, CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells, Sol. Energy Mater. Sol. Cells 87 (2005) 733-746.

DOI: 10.1016/j.solmat.2004.07.047

Google Scholar

[10] D. M. Guldi, G. M. A. Rahman, V. Sgobba, N. A. Kotov, D. Bonifazi, M. Prato, CNT-CdTe versatile donor-acceptor nanohybrids, J. Amer. Chem. Soc. 128 (2006) 2315-2323.

DOI: 10.1021/ja0550733

Google Scholar

[11] H. Lee, S. W. Yoon, E. J. Kim, J. Park, In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials, Nano Lett. 7 (2007) 778-784.

DOI: 10.1021/nl0630539

Google Scholar

[12] S. Song, R. Rao, H. Yang, A. Zhang, Cu2O/MWCNTs prepared by spontaneous redox: growth mechanism and superior catalytic activity, J. Phys. Chem. C 114 (2010) 13998-14003.

DOI: 10.1021/jp103621q

Google Scholar

[13] F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, S. Yang, High Efficiency Semiconducto-Liquid Junction Solar Cells based on Cu/Cu2O, Adv. Funct. Mater. 12 (2012) 3907-3028.

DOI: 10.1002/adfm.201200365

Google Scholar

[14] G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C. W. Lee, J. Park, I. Maeng, J. H. Son, Terahertz Spectroscopy of Nanocrystal-Carbon Nanotube and-Graphene Oxide Hybrid Nanostructures, J. Phys. Chem. C 114 (2010) 11258-11265.

DOI: 10.1021/jp1019894

Google Scholar

[15] T. Lin, F. Huang, J. Liang, Y. Wang, A facile preparation route for boron-doped graphene, and its CdTe solar cell application, Energy Environ. Sci. 4 (2011) 862-865.

DOI: 10.1039/c0ee00512f

Google Scholar

[16] Z. Gao, J. Liu, F. Xu, D. Wu, Z. Wu, K. Jiang, One pot synthesis of graphene-cuprous oxide composite with enhanced photocatalytic activity, Solid State Sci. 14 (2012) 276-280.

DOI: 10.1016/j.solidstatesciences.2011.11.032

Google Scholar

[17] L. Dong, J. Hansen, P. Xu, M. L. Ackerman, S. D. Barber, J. K. Schoelz, D. Qi, P. M. Thibado, Electromechanical properties of freestanding graphene functionalized with tin oxide (SnO2) nanoparticles, Appl. Phys. Lett. 101 (2012) 061601-060601-4.

DOI: 10.1063/1.4745780

Google Scholar

[18] X. Wan, G. Long, L. Huang, Y. Chen, Graphene-A Promising Material for Organic Photovoltaic Cells, Adv. Mater. 23 (2011) 5342-5358.

DOI: 10.1002/adma.201102735

Google Scholar

[19] J. Bai, Q. Zhu, Z. Lv, H. Dong, J. Yu, L. Dong, Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions, Int. J. Hydrogen Energy 38 (2012) 0360-3199.

DOI: 10.1016/j.ijhydene.2012.11.039

Google Scholar

[20] Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, J. Wei, Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT, Adv. Funct. Mater. 19 (2009) 894-904.

DOI: 10.1002/adfm.200800954

Google Scholar

[21] D. Yu, Y. Yang, M. Durstock, J. B. Baek, L. Dai, Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices, ACS Nano 4 (2010) 5633-5640.

DOI: 10.1021/nn101671t

Google Scholar

[22] E. Kymakis, G. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Appl. Phys. Lett. 80 (2002) 112-114.

DOI: 10.1063/1.1428416

Google Scholar

[23] S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, B. Jousselme, Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells, Adv. Funct. Mater. 17 (2007) 3363-3370.

DOI: 10.1002/adfm.200700438

Google Scholar

[24] B. Xu, S. Holdcroft, Molecular control of luminescence from poly (3-hexylthiophenes), Macromolecules 26 (1993) 4457-4460.

DOI: 10.1021/ma00069a009

Google Scholar

[25] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science 258 (1992) 1474-1476.

DOI: 10.1126/science.258.5087.1474

Google Scholar

[26] M. Al-Ibrahim, H. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, S. Sensfuss, The influence of the optoelectronic properties of poly (3-alkylthiophenes) on the device parameters in flexible polymer solar cells, Org. Electron. 6 (2005) 65-77.

DOI: 10.1016/j.orgel.2005.02.004

Google Scholar

[27] M. Padmanabhan, K. Roy, G. Ramalingam, S. Raghavan, A. Ghosh, Electrochemical Integration of Graphene with Light-Absorbing Copper-Based Thin Films, J. Phys. Chem. C 116 (2011) 1200-1204.

DOI: 10.1021/jp208120u

Google Scholar